Synchronizing spatiotemporal chaos in coupled nonlinear oscillators

被引:93
|
作者
Kocarev, L [1 ]
Parlitz, U [1 ]
机构
[1] UNIV GOTTINGEN, DRITTES PHYS INST, D-37037 GOTTINGEN, GERMANY
关键词
D O I
10.1103/PhysRevLett.77.2206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The synchronization of spatiotemporal chaos of two arrays of coupled nonlinear oscillators is achieved by discrete time coupling of individual cells of the arrays. This synchronization method is based on the knowledge of the local dynamics and can be applied to any type of arrays where the synchronization properties of the cells are known. Furthermore, we discuss possible applications of synchronizing spatiotemporal chaos in communication and anticontrol of chaos.
引用
下载
收藏
页码:2206 / 2209
页数:4
相关论文
共 50 条
  • [21] Instant chaos and hysteresis in coupled linear-nonlinear oscillators
    Schwartz, IB
    Georgiou, IT
    PHYSICS LETTERS A, 1998, 242 (06) : 307 - 312
  • [22] Suppression and recovery of spatiotemporal chaos in a ring of coupled oscillators with a single inactive site
    Daido, Hiroaki
    EPL, 2009, 87 (04)
  • [23] Transitions from spatiotemporal chaos to cluster and complete synchronization states in a shift-invariant set of coupled nonlinear oscillators
    Kouomou, YC
    Woafo, P
    PHYSICAL REVIEW E, 2003, 67 (04):
  • [24] Synchronizing Coupled Oscillators in Polygonal Networks with Frustration
    Uwate, Yoko
    Nishio, Yoshifumi
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 745 - 748
  • [25] Dynamical chaos rise in the system of large number of nonlinear coupled oscillators
    Buts, V. A.
    Kovalchuk, I. K.
    Tarasov, D. V.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, (03): : 260 - 264
  • [26] Phase synchronization and chaos suppression in a set of two coupled nonlinear oscillators
    Gonzalez-Miranda, JM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2105 - 2122
  • [27] Phase chaos in coupled oscillators
    Popovych, OV
    Maistrenko, YL
    Tass, PA
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [28] Bifurcation and chaos in coupled oscillators
    Awrejecwicz, J.
    Karamanlidis, D.
    Applied Mechanics Reviews, 1992, 45 (08)
  • [29] Critical slowing down in synchronizing nonlinear oscillators
    Leung, HK
    PHYSICAL REVIEW E, 1998, 58 (05): : 5704 - 5709
  • [30] Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices
    Zhang, Ying-Qian
    Wang, Xing Yuan
    Liu, Li-Yan
    He, Yi
    Liu, Jia
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 52 : 52 - 61