Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entropy (Maxent) and Geographic Information System (GIS)

被引:35
|
作者
Kalboussi, Mohsen [1 ]
Achour, Hammadi [1 ,2 ]
机构
[1] Univ Jendouba, Inst Sylvopastoral Tabarka, Tabarka 8110, Tunisia
[2] Univ Mannouba, Unite Rech Geomat Geosyst 02 UR 10 01, Campus Univ,BP 95, Mannouba 2010, Tunisia
关键词
Species distribution modelling; Maxent; Snakes; Kroumiria; Tunisia; TESTUDO-GRAECA; HABITAT; PERFORMANCE; CONSERVATION; REPTILES; ABSENCE; AFRICA; BIOMOD;
D O I
10.1007/s11676-017-0436-1
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria (Northwestern Tunisia): Natricidae (Natrix maura and Natrix astreptophora), Colubridae (Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae (Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data (collected during 16 years: 2000-2015) with a set of seven environmental variables (mean annual precipitation, elevation, slope gradient, aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%, respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 50 条
  • [41] Analysis of diversity and distribution of Jatropha curcas L. germplasm using Geographic Information System (DIVA-GIS)
    Sunil, N.
    Sivaraj, N.
    Anitha, K.
    Abraham, Babu
    Kumar, Vinod
    Sudhir, E.
    Vanaja, M.
    Varaprasad, K. S.
    [J]. GENETIC RESOURCES AND CROP EVOLUTION, 2009, 56 (01) : 115 - 119
  • [42] Evaluation of spatial brucellosis distribution using the Geographic Information System Towards Building a High Performance Spatial Epidemiology System for Supervision on Zoonotic Infections
    Kuznetsov, Andrey N.
    Syzdykov, Marat S.
    [J]. 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), 2014, : 386 - 388
  • [43] The spatial distribution of leprosy cases from 2002 to 2008 in Sichuan province, China - the application of Geographic Information System (GIS) in leprosy control program
    Liu, YangYing
    Bakker, Mirjan
    Van Brakel, Wim H.
    Xiong, Junhao
    Ning, Yong
    [J]. JOURNAL OF DERMATOLOGY, 2010, 37 : 19 - 19
  • [44] Spatial distribution of bedrock level peak ground acceleration in the National Capital Region of India using geographic information system
    Gupta, Laxmi
    Agrawal, Navdeep
    Dixit, Jagabandhu
    [J]. GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 3287 - 3316
  • [45] Spatial distribution of Zika in Honduras during 2016-2017 using geographic information systems (GIS) - Implications for public health and travel medicine
    Zambrano, Lysien, I
    Vasquez-Bonilla, Walter O.
    Fuentes-Barahona, Itzel Carolina
    da Silva, Jose Claudio
    Valle-Reconco, Jorge Alberto
    Medina, Marco Tulio
    England, John D.
    Sanchez-Duque, Jorge A.
    Rodriguez-Morales, Alfonso J.
    [J]. TRAVEL MEDICINE AND INFECTIOUS DISEASE, 2019, 31
  • [46] Spatial distribution of dengue in Ecuador during 1994-2018 using geographic information systems (GIS) - Implications public health and travel medicine
    Cabrera, M.
    Cordova-Lepe, F.
    Valero-Cedeno, N.
    Reyes-Baque, J.
    Veliz, T.
    Rodriguez, L.
    Rodriguez-Morales, A. J.
    [J]. INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2020, 101 : 451 - 451
  • [47] Spatial distribution of soil nutrient content for sustainable rice agriculture using geographic information system and Naive Bayes classifier
    Yudhana, Anton
    Cahyo, Andreyan Dwi
    Sabila, Liya Yusrina
    Subrata, Arsyad Cahya
    Mufandi, Ilham
    [J]. INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2023, 16 (01):
  • [48] Spatial modeling of groundwater depth fluctuations using co-active neuro-fuzzy inference system (CANFIS) and geographic information system (GIS)
    Gholami, Vahid
    [J]. APPLIED WATER SCIENCE, 2022, 12 (03)
  • [49] Spatial modeling of groundwater depth fluctuations using co-active neuro-fuzzy inference system (CANFIS) and geographic information system (GIS)
    Vahid Gholami
    [J]. Applied Water Science, 2022, 12
  • [50] Geostatistics and Geographic Information System to Analyze the Spatial Distribution of the Diversity of Anastrepha Species (Diptera: Tephritidae): the Effect of Forest Fragments in an Urban Area
    Garcia, A. G.
    Araujo, M. R.
    Uramoto, K.
    Walder, J. M. M.
    Zucchi, R. A.
    [J]. ENVIRONMENTAL ENTOMOLOGY, 2017, 46 (06) : 1189 - 1194