Unified description of classical and quantum behaviours in a variational principle

被引:12
|
作者
Koide, Tomoi [1 ]
Kodama, Takeshi [1 ]
Tsushima, Kazuo [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[2] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078400 Natal, RN, Brazil
关键词
STOCHASTIC CALCULUS; SCHRODINGER-EQUATION; QUANTIZATION; MECHANICS; SYSTEMS; FIELD;
D O I
10.1088/1742-6596/626/1/012055
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a pedagogical introduction of the stochastic variational method and show that this generalized variational principle describes classical and quantum mechanics in a unified way.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Unified Approach to Quantum and Classical Dualities
    Cobanera, E.
    Ortiz, G.
    Nussinov, Z.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (02)
  • [22] Unified Interpretation of Quantum and Classical Logics
    Tokuo, Kenji
    [J]. AXIOMATHES, 2014, 24 (01): : 1 - 7
  • [23] Unified View of Quantum and Classical Correlations
    Modi, Kavan
    Paterek, Tomasz
    Son, Wonmin
    Vedral, Vlatko
    Williamson, Mark
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (08)
  • [24] Variational Principle for Optimal Quantum Controls in Quantum Metrology
    Yang, Jing
    Pang, Shengshi
    Chen, Zekai
    Jordan, Andrew N.
    del Campo, Adolfo
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (16)
  • [25] Progress in classical and quantum variational principles
    Gray, CG
    Karl, G
    Novikov, VA
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (02) : 159 - 208
  • [26] A VARIATIONAL PRINCIPLE OF MAXIMUM PLASTIC WORK IN CLASSICAL PLASTICITY
    HILL, R
    [J]. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1948, 1 (01): : 18 - 28
  • [27] AN EXTREMUM VARIATIONAL PRINCIPLE FOR CLASSICAL HAMILTONIAN-SYSTEMS
    DJUKIC, DS
    ATANACKOVIC, TM
    [J]. ACTA MECHANICA, 1984, 50 (3-4) : 163 - 175
  • [28] A new variational principle for the fundamental equations of classical physics
    Benci, V
    Fortunato, D
    [J]. FOUNDATIONS OF PHYSICS, 1998, 28 (02) : 333 - 352
  • [29] Variational maximum principle for classical optimal control problems
    Dykhta, V.A.
    [J]. Avtomatika i Telemekhanika, 2002, (04): : 47 - 54
  • [30] A variational maximum principle for classical optimal control problems
    Dykhta, VA
    [J]. AUTOMATION AND REMOTE CONTROL, 2002, 63 (04) : 560 - 567