Enriched P-partitions

被引:121
|
作者
Stembridge, JR
机构
关键词
D O I
10.1090/S0002-9947-97-01804-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An (ordinary) P-partition is an order-preserving map from a partially ordered set to a chain, with special rules specifying where equal values may occur. Examples include number-theoretic partitions (ordered and unordered, strict or unrestricted), plane partitions, and the semistandard tableaux associated with Schur's S-functions. In this paper, we introduce and develop a theory of enriched P-partitions; like ordinary P-partitions, these are order-preserving maps from posets to chains, but with different rules governing the occurrence of equal values. The principal examples of enriched P-partitions given here are the tableaux associated with Schur's Q-functions. In a sequel to this paper, further applications related to commutation monoids and reduced words in Coxeter groups will be presented.
引用
收藏
页码:763 / 788
页数:26
相关论文
共 50 条
  • [21] On P-partitions related to ordinal sums of posets
    Gao, Wei
    Hou, Qing-Hu
    Xin, Guoce
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1370 - 1381
  • [22] ON THE STRUCTURE OF ONE CLASS OF PERFECT P-PARTITIONS
    Rychkov, K. L.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 1499 - 1518
  • [23] Jacobi-Stirling polynomials and P-partitions
    Gessel, Ira M.
    Lin, Zhicong
    Zeng, Jiang
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (08) : 1987 - 2000
  • [24] s-INVERSION SEQUENCES AND P-PARTITIONS OF TYPE B
    Chen, William Y. C.
    Guo, Alan J. X.
    Guo, Peter L.
    Huang, Harry H. Y.
    Liu, Thomas Y. H.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1632 - 1643
  • [25] Poset Ideals of P-Partitions and Generalized Letterplace and Determinantal Ideals
    Gunnar Fløystad
    Acta Mathematica Vietnamica, 2019, 44 : 213 - 241
  • [26] Poset Ideals of P-Partitions and Generalized Letterplace and Determinantal Ideals
    Floystad, Gunnar
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (01) : 213 - 241
  • [27] Descent Monomials, P-Partitions and Dense Garsia-Haiman Modules
    Edward E. Allen
    Journal of Algebraic Combinatorics, 2004, 20 : 173 - 193
  • [28] Descent monomials, P-partitions and dense Garsia-Haiman modules
    Allen, EE
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2004, 20 (02) : 173 - 193
  • [29] Using Rota's Umbral calculus to enumerate Stanley's P-partitions
    Ekhad, Shalosh B.
    Zeilberger, Doron
    ADVANCES IN APPLIED MATHEMATICS, 2008, 41 (02) : 206 - 213
  • [30] P-partitions and a multi-parameter Klyachko idempotent -: art. no. A5
    McNamara, P
    Reutenauer, C
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 11 (02):