THE INVERSE PROBLEM IN CONVEX OPTIMIZATION WITH LINEAR CONSTRAINTS

被引:2
|
作者
Aloqeili, Marwan [1 ]
机构
[1] Birzeit Univ, Dept Math, POB 14, Birzeit, Palestine
关键词
Inverse problem; multi-constraint maximization; value function; Slutsky relations;
D O I
10.1051/cocv/2015040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we solve an inverse problem arising in convex optimization. We consider a maximization problem under m linear constraints. We characterize the solutions of this kind of problems. More precisely, we give necessary and sufficient conditions for a given function in R-n to be the solution of a multi-constraint maximization problem. The conditions we give here extend well-known results in microeconomic theory.
引用
收藏
页码:71 / 94
页数:24
相关论文
共 50 条
  • [41] Linear optimization problem subject to fuzzy relation equations as constraints
    Thapar, Antika
    Pandey, Dhaneshwar
    Gaur, S. K.
    Srivastava, Pankaj
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2009, 32 (1-2): : 27 - 34
  • [42] Filter design under magnitude constraints is a finite dimensional convex optimization problem
    Rossignol, L
    Scorletti, G
    Fromion, V
    [J]. PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 3575 - 3580
  • [43] The Combined Homotopy Methods for Optimization Problem in Non-convex Constraints Region
    Gao, Yunfeng
    [J]. ADVANCES IN MULTIMEDIA, SOFTWARE ENGINEERING AND COMPUTING, VOL 2, 2011, 129 : 557 - 561
  • [44] The Convex Geometry of Linear Inverse Problems
    Chandrasekaran, Venkat
    Recht, Benjamin
    Parrilo, Pablo A.
    Willsky, Alan S.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (06) : 805 - 849
  • [45] The Convex Geometry of Linear Inverse Problems
    Venkat Chandrasekaran
    Benjamin Recht
    Pablo A. Parrilo
    Alan S. Willsky
    [J]. Foundations of Computational Mathematics, 2012, 12 : 805 - 849
  • [46] NOISY LINEAR INVERSE PROBLEMS UNDER CONVEX CONSTRAINTS: EXACT RISK ASYMPTOTICS IN HIGH DIMENSIONS
    Han, Qiyang
    [J]. ANNALS OF STATISTICS, 2023, 51 (04): : 1611 - 1638
  • [47] A formulation of the linear discrete Coulomb friction problem via convex optimization
    Acary, Vincent
    Cadoux, Florent
    Lemarechal, Claude
    Malick, Jerome
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (02): : 155 - 175
  • [48] Design of a kind of nonlinear neural networks for solving the inverse optimal value problem with convex constraints
    Huaiqin Wu
    Kewang Wang
    Qiangqiang Guo
    Guohua Xu
    Ning Li
    [J]. International Journal of Machine Learning and Cybernetics, 2014, 5 : 85 - 92
  • [49] The Inverse Moment Problem for Convex Polytopes
    Nick Gravin
    Jean Lasserre
    Dmitrii V. Pasechnik
    Sinai Robins
    [J]. Discrete & Computational Geometry, 2012, 48 : 596 - 621
  • [50] The Inverse Moment Problem for Convex Polytopes
    Gravin, Nick
    Lasserre, Jean
    Pasechnik, Dmitrii V.
    Robins, Sinai
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (03) : 596 - 621