THE INVERSE PROBLEM IN CONVEX OPTIMIZATION WITH LINEAR CONSTRAINTS

被引:2
|
作者
Aloqeili, Marwan [1 ]
机构
[1] Birzeit Univ, Dept Math, POB 14, Birzeit, Palestine
关键词
Inverse problem; multi-constraint maximization; value function; Slutsky relations;
D O I
10.1051/cocv/2015040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we solve an inverse problem arising in convex optimization. We consider a maximization problem under m linear constraints. We characterize the solutions of this kind of problems. More precisely, we give necessary and sufficient conditions for a given function in R-n to be the solution of a multi-constraint maximization problem. The conditions we give here extend well-known results in microeconomic theory.
引用
收藏
页码:71 / 94
页数:24
相关论文
共 50 条
  • [41] Solving linear optimization problem with fuzzy relational equations as constraints
    Dhaneshwar Pandey
    S. K. Gaur
    OPSEARCH, 2004, 41 (1) : 63 - 71
  • [42] The Combined Homotopy Methods for Optimization Problem in Non-convex Constraints Region
    Gao, Yunfeng
    ADVANCES IN MULTIMEDIA, SOFTWARE ENGINEERING AND COMPUTING, VOL 2, 2011, 129 : 557 - 561
  • [43] The Convex Geometry of Linear Inverse Problems
    Chandrasekaran, Venkat
    Recht, Benjamin
    Parrilo, Pablo A.
    Willsky, Alan S.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (06) : 805 - 849
  • [44] The Convex Geometry of Linear Inverse Problems
    Venkat Chandrasekaran
    Benjamin Recht
    Pablo A. Parrilo
    Alan S. Willsky
    Foundations of Computational Mathematics, 2012, 12 : 805 - 849
  • [45] A formulation of the linear discrete Coulomb friction problem via convex optimization
    Acary, Vincent
    Cadoux, Florent
    Lemarechal, Claude
    Malick, Jerome
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (02): : 155 - 175
  • [46] NOISY LINEAR INVERSE PROBLEMS UNDER CONVEX CONSTRAINTS: EXACT RISK ASYMPTOTICS IN HIGH DIMENSIONS
    Han, Qiyang
    ANNALS OF STATISTICS, 2023, 51 (04): : 1611 - 1638
  • [47] The Inverse Moment Problem for Convex Polytopes
    Nick Gravin
    Jean Lasserre
    Dmitrii V. Pasechnik
    Sinai Robins
    Discrete & Computational Geometry, 2012, 48 : 596 - 621
  • [48] Design of a kind of nonlinear neural networks for solving the inverse optimal value problem with convex constraints
    Huaiqin Wu
    Kewang Wang
    Qiangqiang Guo
    Guohua Xu
    Ning Li
    International Journal of Machine Learning and Cybernetics, 2014, 5 : 85 - 92
  • [49] The Inverse Moment Problem for Convex Polytopes
    Gravin, Nick
    Lasserre, Jean
    Pasechnik, Dmitrii V.
    Robins, Sinai
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (03) : 596 - 621
  • [50] Design of a kind of nonlinear neural networks for solving the inverse optimal value problem with convex constraints
    Wu, Huaiqin
    Wang, Kewang
    Guo, Qiangqiang
    Xu, Guohua
    Li, Ning
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2014, 5 (01) : 85 - 92