Instrumental variable identification of fading channel models from irregularly sampled noisy data

被引:2
|
作者
Mossberg, Magnus [1 ]
Larsson, Erik K. [2 ]
机构
[1] Karlstad Univ, Dept Elect Engn, Karlstad, Sweden
[2] Uppsala Univ, Dept Syst & Control, S-75105 Uppsala, Sweden
关键词
D O I
10.1109/ACC.2008.4586460
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A continuous-time stochastic model is considered for describing fading channels from irregularly sampled data affected by measurement noise. The model parameters are estimated using an instrumental variable approach that gives consistent estimates as the number of data tends to infinity and the upper bound on the irregular sampling interval tends to zero. The proposed estimator is robust to measurement noise, computationally efficient, and easy to implement. Once the model parameters are estimated, the design of efficient algorithms for power control is possible.
引用
收藏
页码:25 / +
页数:2
相关论文
共 50 条
  • [1] High-accuracy instrumental variable identification of continuous-time autoregressive processes from irregularly, sampled noisy data
    Mossberg, Magnus
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (08) : 4087 - 4091
  • [2] Estimation for power control of large-scale fading channels from irregularly sampled noisy data
    Mossberg, Magnus
    Larsson, Erik K.
    Mossberg, Eva
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 626 - +
  • [3] Refined instrumental variable parameter estimation of continuous-time Box-Jenkins models from irregularly sampled data
    Chen, Fengwei
    Garnier, Hugues
    Gilson, Marion
    Aguero, Juan C.
    Liu, Tao
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (02): : 291 - 300
  • [4] Identification of continuous-time ARX models from irregularly sampled data
    Larsson, Erik K.
    Mossberg, Magnus
    Soderstrom, Torsten
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (03) : 417 - 427
  • [5] INTERPOLATION, REALIZATION, AND RECONSTRUCTION OF NOISY, IRREGULARLY SAMPLED DATA
    RYBICKI, GB
    PRESS, WH
    [J]. ASTROPHYSICAL JOURNAL, 1992, 398 (01): : 169 - 176
  • [6] Fast estimators for large-scale fading channels from irregularly sampled data
    Mossberg, M
    Larsson, EK
    Mossberg, E
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (07) : 2803 - 2808
  • [7] EM-based identification of continuous-time ARMA Models from irregularly sampled data
    Chen, Fengwei
    Aguero, Juan C.
    Gilson, Marion
    Garnier, Hugues
    Liu, Tao
    [J]. AUTOMATICA, 2017, 77 : 293 - 301
  • [8] Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data
    Chen, Fengwei
    Garnier, Hugues
    Gilson, Marion
    [J]. JOURNAL OF PROCESS CONTROL, 2015, 25 : 19 - 27
  • [9] Interpolation of Irregularly Sampled Noisy Seismic Data with the Nonconvex Regularization and Proximal Method
    Cao, Jing-Jie
    Yao, Gang
    da Silva, Nuno, V
    [J]. PURE AND APPLIED GEOPHYSICS, 2022, 179 (02) : 663 - 678
  • [10] Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data
    Liu, Zitao
    Hauskrecht, Milos
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1273 - 1279