Times Are Changing: Investigating the Pace of Language Change in Diachronic Word Embeddings

被引:0
|
作者
Brandl, Stephanie [1 ]
Lassner, David [1 ]
机构
[1] TU Berlin, Machine Learning Grp, Berlin, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose Word Embedding Networks (WEN), a novel method that is able to learn word embeddings of individual data slices while simultaneously aligning and ordering them without feeding temporal information a priori to the model. This gives us the opportunity to analyse the dynamics in word embeddings on a large scale in a purely data-driven manner. In experiments on two different newspaper corpora, the New York Times (English) and Die Zeit (German), we were able to show that time actually determines the dynamics of semantic change. However, we find that the evolution does not happen uniformly, but instead we discover times of faster and times of slower change.
引用
收藏
页码:146 / 150
页数:5
相关论文
共 50 条
  • [31] Word Embeddings for Latvian Natural Language Processing Tools
    Znotins, Arturs
    HUMAN LANGUAGE TECHNOLOGIES - THE BALTIC PERSPECTIVE, 2016, 289 : 167 - 173
  • [32] Language with vision: A study on grounded word and sentence embeddings
    Shahmohammadi, Hassan
    Heitmeier, Maria
    Shafaei-Bajestan, Elnaz
    Lensch, Hendrik P. A.
    Baayen, R. Harald
    BEHAVIOR RESEARCH METHODS, 2024, 56 (06) : 5622 - 5646
  • [33] Rotations and Interpretability of Word Embeddings: The Case of the Russian Language
    Zobnin, Alexey
    ANALYSIS OF IMAGES, SOCIAL NETWORKS AND TEXTS, AIST 2017, 2018, 10716 : 116 - 128
  • [34] Word embeddings for biomedical natural language processing: A survey
    Chiu, Billy
    Baker, Simon
    LANGUAGE AND LINGUISTICS COMPASS, 2020, 14 (12):
  • [35] Comprehensive Evaluation of Word Embeddings for Highly Inflectional Language
    Drozda, Pawel
    Sopyla, Krzysztof
    Lewalski, Juliusz
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 1463 : 597 - 607
  • [36] Improving semantic change analysis by combining word embeddings and word frequencies
    Englhardt, Adrian
    Willkomm, Jens
    Schaeler, Martin
    Boehm, Klemens
    INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES, 2020, 21 (03) : 247 - 264
  • [37] Improving semantic change analysis by combining word embeddings and word frequencies
    Adrian Englhardt
    Jens Willkomm
    Martin Schäler
    Klemens Böhm
    International Journal on Digital Libraries, 2020, 21 : 247 - 264
  • [38] Word Embeddings for Code-Mixed Language Processing
    Pratapa, Adithya
    Choudhury, Monojit
    Sitaram, Sunayana
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3067 - 3072
  • [39] Word Embeddings for Romanian Language and Their Use for Synonyms Detection
    Popescu, Claudiu Marius
    Rusu, Corneliu
    Grama, Lacrimioara
    2021 INTERNATIONAL CONFERENCE ON SPEECH TECHNOLOGY AND HUMAN-COMPUTER DIALOGUE (SPED), 2021, : 151 - 155
  • [40] A comparison of word embeddings for the biomedical natural language processing
    Wang, Yanshan
    Liu, Sijia
    Afzal, Naveed
    Rastegar-Mojarad, Majid
    Wang, Liwei
    Shen, Feichen
    Kingsbury, Paul
    Liu, Hongfang
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 87 : 12 - 20