Early Precambrian Crustal Evolution in the Irkut Block (Sharyzhalgai Uplift, Southwestern Siberian Craton): Synthesis of U-Pb, Lu-Hf and Sm-Nd Isotope Data

被引:8
|
作者
Turkina, O. M. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, VS Sobolev Inst Geol & Mineral, Pr Akad Kopiyuga 3, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Ul Pirogova 1, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Archean; Paleoproterozoic; crustal growth and recycling; depleted and enriched mantle sources; GRANULITE-GNEISS BLOCK; CHARNOCKITE-GRANITE COMPLEX; METATERRIGENOUS ROCKS; LITHOSPHERIC MANTLE; PLATFORM BASEMENT; LAKE BAIKAL; RE-OS; AGE; ZIRCON; METAMORPHISM;
D O I
10.2113/RGG20204255
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The paper presents a synthesis of zircon U-Pb and Lu-Hf and whole-rock Sm-Nd isotope data from main early Precambrian (3.40 to 1.85 Ga) metamorphic and magmatic units of the Irkut block (Sharyzhalgai uplift, southwestern Siberian craton). The Archean complexes consist of relict Paleoarchean (3.4 Ga) melanocratic granulites and predominant Neoarchean mafic and felsic granulites (2.70- 2.66 Ga), paragneisses (<= 2.75 Ga), and gneissic granites (2.54 Ga). The Paleoproterozoic complexes include paragneisses (1.95-1.85 Ga), granitoids and charnockites (1.86-1.84 Ga), as well as mafic intrusions and dikes (1.86 Ga). Few detrital zircons with Hf model ages of >= 3.6 Ga mark the Eoarchean onset of crustal growth in the Irkut block. Isotopic data record two major stages of crustal growth in early Precambrian evolution of the Irkut block: Paleoarchean (3.6-3.4 Ga) and Neoarchean (similar to 2.7-2.66 Ga). The Paleoarchean crustal growth was most likely associated with plume magmatism fed from depleted and primitive mantle sources. The spatial distribution of Paleoarchean crust is traceable in isotopic signatures of magmatic and detrital zircons from most of Mesoarchean to Paleoproterozoic units. The Neoarchean crustal growth from a depleted mantle source was due to subduction magmatism. Moderate crustal growth occurred in the Paleoproterozoic from 2.30 to 1.85 Ga. At the turn of 1.86-1.85 Ga, mafic magmas and products of their fractionation formed from both depleted and enriched sources under postcollisional extension; the latter sources were the subcontinental lithospheric mantle formed during Neoarchean subduction. Three major stages of crustal recycling have been established: Mesoarchean (similar to 3.0 Ga), Neoarchean (similar to 2.55 Ga), and Paleoproterozoic (1.86-1.85 Ga), which are characterized by near-coeval intracrustal melting and metamorphism. The recycling during the similar to 2.55 Ga and 1.86-1.85 Ga events apparently occurred in a collisional setting. The 2.7 Ga subduction-related felsic magmas also formed through the recycling of the Paleo-Mesoarchean crust. The hypothesized scenario for the geological evolution of the Irkut block is the dominant vertical growth and crustal recycling for about two billion years. Available isotope data record similar major crustal growth in the Paleoarchean and growth combined with recycling during the Neoarchean and Paleoproterozoic events in both the southwestern and northern and central parts of the Siberian craton. The Irkut block in the southwest differed in a long and continuous recycling during the Mesoarchean and pronounced Neoarchean crustal growth.
引用
收藏
页码:137 / 152
页数:16
相关论文
共 50 条
  • [21] On the edge: U-Pb, Lu-Hf, and Sm-Nd data suggests reworking of the Yilgarn craton margin during formation of the Albany-Fraser Orogen
    Kirkland, C. L.
    Spaggiari, C. V.
    Pawley, M. J.
    Wingate, M. T. D.
    Smithies, R. H.
    Howard, H. M.
    Tyler, I. M.
    Belousova, E. A.
    Poujol, M.
    PRECAMBRIAN RESEARCH, 2011, 187 (3-4) : 223 - 247
  • [22] Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U-Pb and Lu-Hf isotope compositions
    Chen, Nengsong
    Gong, Songlin
    Sun, Min
    Li, Xiaoyan
    Xia, Xiaoping
    Wang, Qinyan
    Wu, Fuyuan
    Xu, Ping
    JOURNAL OF ASIAN EARTH SCIENCES, 2009, 35 (3-4) : 367 - 376
  • [23] Provenance of the Vazante Group: New U-Pb, Sm-Nd, Lu-Hf isotopic data and implications for the tectonic evolution of the Neoproterozoic Brasilia Belt
    Rodrigues, J. B.
    Pimentel, M. M.
    Buhn, B.
    Matteini, M.
    Dardenne, M. A.
    Alvarenga, C. J. S.
    Armstrong, R. A.
    GONDWANA RESEARCH, 2012, 21 (2-3) : 439 - 450
  • [24] Zircon U-Pb and Lu-Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield
    Joao Marinho Milhomem Neto
    Jean-Michel Lafon
    Geoscience Frontiers, 2019, (04) : 1477 - 1506
  • [25] Zircon U-Pb and Lu-Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield
    Joao Marinho Milhomem Neto
    JeanMichel Lafon
    Geoscience Frontiers, 2019, 10 (04) : 1477 - 1506
  • [26] Archean crustal evolution in the Southern Sao Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses
    Albert, Capucine
    Farina, Federico
    Lana, Cristiano
    Stevens, Gary
    Storey, Craig
    Gerdes, Axel
    Martinez Dopico, Carmen
    LITHOS, 2016, 266 : 64 - 86
  • [27] Zircon U-Pb and Lu-Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield
    Milhomem Neto, Joao Marinho
    Lafon, Jean-Michel
    GEOSCIENCE FRONTIERS, 2019, 10 (04) : 1477 - 1506
  • [28] Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons
    Wang, L. J.
    O'Reilly, S. Y.
    Griffin, W. L.
    Yu, J. H.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2010, 74 (12) : A1105 - A1105
  • [29] Zircon U-Pb and Lu-Hf isotopes reveal the crustal evolution of the SW Angolan Shield (Congo Craton)
    Ferreira, Ezequiel
    Lehmann, Jeremie
    Rodrigues, Jose Feliciano
    Hayes, Ben
    Merino-Martinez, Enrique
    Milani, Lorenzo
    Bybee, Grant M.
    Smith, Trishya M. Owen
    Garcia-Lobon, Jose Luis
    Tassinari, Colombo C. G.
    Ueckermann, Henriette
    Sato, Kei
    Silva, Paulo Bravo
    Correia, Joao
    Labaredas, Jose
    Duarte, Laurent
    Molekwa, Mmasetena Anna
    Manuel, Jose
    Victorino, Americo da Mata Lourenco
    GONDWANA RESEARCH, 2024, 131 : 317 - 342
  • [30] In situ U-Pb geochronology, Lu-Hf and Sm-Nd isotope systematics of the Hoidas Lake REE deposit, northern Saskatchewan, Canada
    Pandur, Krisztina
    Ansdell, Kevin M.
    Eglington, Bruce M.
    Harper, Charlie T.
    Hanchar, John M.
    McFarlane, Christopher R. M.
    PRECAMBRIAN RESEARCH, 2020, 339