We study well-posedness for the initial value problem associated to the Benjamin equation and the periodic Benjamin equation. Global results are established for data in L-R(R) and L-2(T), respectively. We apply the recent theory, developed by Kenig, Pence, and Vega and Bourgain, to deal with low-regularity data for the initial value problem associated to the Korteweg-de Vries equation. (C) 1999 Academic Press.
机构:
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaInst Appl Phys & Computat Math, Beijing 100088, Peoples R China
Chen, Wengu
Wei, Suqing
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R ChinaInst Appl Phys & Computat Math, Beijing 100088, Peoples R China
Wei, Suqing
Li, Junfeng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R ChinaInst Appl Phys & Computat Math, Beijing 100088, Peoples R China
机构:
Chonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
Chonnam Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South KoreaChonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
Cho, Yonggeun
Hwang, Gyeongha
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South KoreaChonnam Natl Univ, Dept Math, Jeonju 561756, South Korea