The universal regular quotient of the Chow group of points on projective varieties

被引:28
|
作者
Esnault, H [1 ]
Srinivas, V [1 ]
Viehweg, E [1 ]
机构
[1] Univ Essen Gesamthsch, FB6 Math, D-45117 Essen, Germany
关键词
D O I
10.1007/s002220050296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:595 / 664
页数:70
相关论文
共 50 条
  • [21] Unipotent group actions on projective varieties
    Gurjar, Rajendra V.
    Masuda, Kayo
    Miyanishi, Masayoshi
    ALGEBRAIC VARIETIES AND AUTOMORPHISM GROUPS, 2017, 75 : 119 - 162
  • [22] On the standard conjecture and the existence of a Chow-Lefschetz decomposition for complex projective varieties
    Tankeev, S. G.
    IZVESTIYA MATHEMATICS, 2015, 79 (01) : 177 - 207
  • [23] Hilbert schemes of points on smooth projective surfaces and generalized Kummer varieties with finite group actions
    Zhan, Sailun
    ARKIV FOR MATEMATIK, 2023, 61 (02): : 475 - 493
  • [24] ON THE FUNDAMENTAL GROUP SCHEMES OF CERTAIN QUOTIENT VARIETIES
    Biswas, Indranil
    Hai, Phung Ho
    dos Santos, Joao Pedro
    TOHOKU MATHEMATICAL JOURNAL, 2021, 73 (04) : 565 - 595
  • [25] UNIVERSAL EXPANSION OF SEMIGROUP VARIETIES BY REGULAR INVOLUTION
    KOUBEK, V
    SEMIGROUP FORUM, 1993, 46 (02) : 152 - 159
  • [27] FIXED-POINTS OF TORUS ACTIONS ON PROJECTIVE VARIETIES
    BIALYNICKIBIRULA, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (11): : 1097 - 1101
  • [28] Algebraic varieties with quasi-projective universal cover
    Claudon, Benoit
    Hoering, Andreas
    Kollar, Janos
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 679 : 207 - 221
  • [29] Universal Triviality of the Chow Group of 0-cycles and the Brauer Group
    Auel, Asher
    Bigazzi, Alessandro
    Bohning, Christian
    Von Bothmer, Hans-Christian Graf
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (04) : 2479 - 2496
  • [30] The universal cover of the quotient of a locally defined group
    Berestovskii, Valera
    Plaut, Conrad
    Topology Proceedings, Vol 28, No 2, 2004, 2004, 28 (02): : 335 - 342