Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics

被引:51
|
作者
Zhou, Yinning [1 ]
Ma, Zhichao [1 ]
Ai, Ye [1 ]
机构
[1] Singapore Univ Technol & Design, Pillar Engn Prod Dev, Singapore 487372, Singapore
关键词
MESENCHYMAL STEM-CELLS; CONTINUOUS SEPARATION; POISEUILLE FLOW; ENTRY FLOW; SIZE; MIGRATION; DIELECTROPHORESIS; CHANNEL; FLUIDS; CHIP;
D O I
10.1039/c9lc01071h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Inertial particle separation using passive hydrodynamic forces has attracted great attention in the microfluidics community because of its operation simplicity and high throughput sample processing. Due to the passive nature of inertial microfluidics, each inertial sorting device is typically fixed to a certain cut-off size for particle separation that is mainly dependent on the channel geometry and dimensions, which however lacks tunability in the separation threshold to fulfill the needs of different sorting applications. In this work, we explore the use of non-Newtonian viscoelastic fluids to achieve size-tunable elasto-inertial particle focusing and sorting in a microfluidic device with reverse wavy channel structures. The balance and competition among inertial lift force, Dean drag force and the controllable elastic lift force give rise to interesting size-based particle focusing phenomena with tunability in the equilibrium focusing positions. Seven differently sized fluorescent microspheres (0.3, 2, 3, 5, 7, 10 and 15 mu m) are used to investigate the effects of the flow rate, viscoelastic fluid concentration and particle size on the tunable elasto-inertial focusing behavior. With the sorting tunability, we have achieved a highly effective sorting of a particle mixture into three subpopulations based on the particle size, i.e., small, intermediate and large subpopulations. We even demonstrate the controllable tunability among three separation thresholds for elasto-inertial particle sorting without changing the geometry and dimensions of the microfluidic device. The tunability of the developed elasto-inertial particle focusing and sorting can significantly broaden its application in a variety of biomedical research studies.
引用
下载
收藏
页码:568 / 581
页数:14
相关论文
共 50 条
  • [11] A numerical study of Elasto-inertial particle-focusing in straight and serpentine microchannels
    Nouri, Moein
    Parvizian, Parsa
    Nikookalam, Amirreza
    Seifi, Saeid
    Shamloo, Amir
    RESULTS IN ENGINEERING, 2024, 23
  • [12] Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices
    Xiang, Nan
    Ni, Zhonghua
    Yi, Hong
    ELECTROPHORESIS, 2018, 39 (02) : 417 - 424
  • [13] Numerical investigation of elasto-inertial particle focusing patterns in viscoelastic microfluidic devices
    Raffiee, Amir Hossein
    Ardekani, Arezoo M.
    Dabiri, Sadegh
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2019, 272
  • [14] Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel
    Yang, Seungyoung
    Kim, Jae Young
    Lee, Seong Jae
    Lee, Sung Sik
    Kim, Ju Min
    LAB ON A CHIP, 2011, 11 (02) : 266 - 273
  • [15] Tunable three-dimensional elasto-inertial focusing of particles and cells in the ultrastretchable microchannel
    Liu, Ping
    Jia, Zixuan
    Liu, Yong
    Xu, Shanshan
    Liu, Xiumei
    Peng, Ran
    Yan, Sheng
    Physics of Fluids, 2024, 36 (09)
  • [16] Elasto-Inertial Particle Focusing in Microchannel with T-Shaped Cross-Section
    Jang, Jaekyeong
    Kim, Uihwan
    Kim, Taehoon
    Cho, Younghak
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [17] Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel
    Kim, Bookun
    Kim, Ju Min
    BIOMICROFLUIDICS, 2016, 10 (02)
  • [18] Magnetophoresis-Enhanced Elasto-Inertial Migration of Microparticles and Cells in Microfluidics
    Yan, Sheng
    Liu, Yong
    Nguyen, Nam-Trung
    Zhang, Jun
    ANALYTICAL CHEMISTRY, 2024, 96 (09) : 3925 - 3932
  • [19] Numerical simulation of elasto-inertial focusing of particles in straight microchannels
    Jiang, Di
    Ni, Chen
    Tang, Wenlai
    Xiang, Nan
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (06)
  • [20] Elasto-Inertial Turbulence
    Dubief, Yves
    Terrapon, Vincent E.
    Hof, Bjoern
    ANNUAL REVIEW OF FLUID MECHANICS, 2023, 55 : 675 - 705