Automated detection of diabetic retinopathy using custom convolutional neural network

被引:11
|
作者
Albahli, Saleh [1 ]
Yar, Ghulam Nabi Ahmad Hassan [2 ,3 ]
机构
[1] Qassim Univ, Coll Comp, Dept Informat Technol, Buraydah, Saudi Arabia
[2] Air Univ, Dept Elect & Comp Engn, Islamabad, Pakistan
[3] ZR Tech Co, Austell Dr, Stockport, Lancs, England
关键词
CNN; deep learning; diabetic retinopathy; diabetes mellitus; ResNet50; VGG16; VGG19; SEGMENTATION;
D O I
10.3233/XST-211073
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Diabetic retinopathy is an eye deficiency that affects retina as a result of the patient having diabetes mellitus caused by high sugar levels, which may eventually lead to macular edema. The objective of this study is to design and compare several deep learning models that detect severity of diabetic retinopathy, determine risk of leading to macular edema, and segment different types of disease patterns using retina images. Indian Diabetic Retinopathy Image Dataset (IDRiD) dataset was used for disease grading and segmentation. Since images of the dataset have different brightness and contrast, we employed three techniques for generating processed images from the original images, which include brightness, color and, contrast (BCC) enhancing, color jitters (CJ), and contrast limited adaptive histogram equalization (CLAHE). After image preporcessing, we used pre-trained ResNet50, VGG16, and VGG19 models on these different preprocessed images both for determining the severity of the retinopathy and also the chances of macular edema. UNet was also applied to segment different types of diseases. To train and test these models, image dataset was divided into training, testing, and validation data at 70%, 20%, and 10% ratios, respectively. During model training, data augmentation method was also applied to increase the number of training images. Study results show that for detecting the severity of retinopathy and macular edema, ResNet50 showed the best accuracy using BCC and original images with an accuracy of 60.2% and 82.5%, respectively, on validation dataset. In segmenting different types of diseases, UNet yielded the highest testing accuracy of 65.22% and 91.09% for microaneurysms and hard exudates using BCC images, 84.83% for optic disc using CJ images, 59.35% and 89.69% for hemorrhages and soft exudates using CLAHE images, respectively. Thus, image preprocessing can play an important role to improve efficacy and performance of deep learning models.
引用
收藏
页码:275 / 291
页数:17
相关论文
共 50 条
  • [21] RETRACTED ARTICLE: Efficient diabetic retinopathy detection using convolutional neural network and data augmentationEfficient diabetic retinopathy detection using convolutional neural network and data...S. Naik et al.
    Srinivas Naik
    Deepthi Kamidi
    Sudeepthi Govathoti
    Ramalingaswamy Cheruku
    A Mallikarjuna Reddy
    Soft Computing, 2024, 28 (Suppl 2) : 617 - 617
  • [22] Diabetic Retinopathy Classification Using an Efficient Convolutional Neural Network
    Gao, Jiaxi
    Leung, Cyril
    Miao, Chunyan
    2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 80 - 85
  • [23] Classification for diabetic retinopathy by using staged convolutional neural network
    Wang, Hongqiu
    Sun, Yingxue
    Cao, Yunjian
    Ouyang, Ganlu
    Wang, Xin
    Wu, Shaozhi
    Tian, Miao
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 228 - 233
  • [24] Diabetic Retinopathy Detection using Deep Convolutional Neural Networks
    Doshi, Darshit
    Shenoy, Aniket
    Sidhpura, Deep
    Gharpure, Prachi
    2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 261 - 266
  • [25] Residual Convolutional Neural Network for Diabetic Retinopathy
    Rufaida, Syahidah Izza
    Fanany, Mohamad Ivan
    2017 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2017, : 367 - 373
  • [26] Automated Detection of Infection in Diabetic Foot Ulcer Images Using Convolutional Neural Network
    Yogapriya, J.
    Chandran, Venkatesan
    Sumithra, M. G.
    Elakkiya, B.
    Shamila Ebenezer, A.
    Suresh Gnana Dhas, C.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [27] CONVOLUTIONAL NEURAL NETWORKS FOR DIABETIC RETINOPATHY DETECTION
    Patino-Perez, Darwin
    Armijos-Valarezo, Luis
    Choez-Acosta, Luis
    Burgos-Robalino, Freddy
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2025, (33):
  • [28] Detection of Diabetic Retinopathy using Deep Neural Network
    Chen, HaiQuan
    Zeng, XiangLong
    Luo, Yuan
    Ye, WenBin
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [29] Diabetic Retinopathy Detection using feedforward Neural Network
    Yadav, Jayant
    Sharma, Manish
    Saxena, Vikas
    2017 TENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2017, : 363 - 365
  • [30] Automated Edge Detection Using Convolutional Neural Network
    El-Sayed, Mohamed A.
    Estaitia, Yarub A.
    Khafagy, Mohamed A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2013, 4 (10) : 11 - 17