Granular neural networks: The development of granular input spaces and parameters spaces through a hierarchical allocation of information granularity

被引:6
|
作者
Song, Mingli [1 ,2 ]
Jing, Yukai [1 ]
机构
[1] Commun Univ China, Sch Comp Sci & Cybersecur, Beijing, Peoples R China
[2] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Granular neural networks; Hierarchical allocation; Information granularity; PSO; Interval analysis; ALGORITHM; SYSTEMS; FUSION;
D O I
10.1016/j.ins.2019.12.081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The issue of granular output optimization of neural networks with fixed connections within a given input space is explored. The numeric output optimization is a highly nonlinear problem if nonlinear activation functions are used; the granular output optimization becomes an even more challenging task. We solve the problem by developing an optimal hierarchical allocation of information granularity, proposing a new objective function which considers both specificity and evidence, and engaging here efficient techniques of evolutionary optimization. In contrast to the existing techniques, the hierarchical one builds a three-level hierarchy to allocate information granularity to the input space and the architecture (parameters) of the network. Granulating both the input features and the architecture at the same time return a different result with the single factor granulation. The constructed granular neural network emphasizes the abstract nature of data and the granular nature of nonlinear mapping of the architecture. Experimental studies completed for synthetic data and publicly available data sets are used to realize the algorithm. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 166
页数:19
相关论文
共 43 条
  • [31] Modular Granular Neural Networks Optimization with Multi-Objective Hierarchical Genetic Algorithm for human recognition based on iris biometric
    Sanchez, Daniela
    Melin, Patricia
    Castillo, Oscar
    Valdez, Fevrier
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 772 - 778
  • [32] Simplified neural networks algorithm for function approximation on discrete input spaces in high dimension-limited sample applications
    Haider, Syed Shabbir
    Zeng, Xiao-Jun
    [J]. NEUROCOMPUTING, 2009, 72 (4-6) : 1078 - 1083
  • [33] Look & Pedal: Hands-free Navigation in Zoomable Information Spaces through Gaze-supported Foot Input
    Klamka, Konstantin
    Siegel, Andreas
    Vogt, Stefan
    Goebel, Fabian
    Stellmach, Sophie
    Dachselt, Raimund
    [J]. ICMI'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2015, : 123 - 130
  • [34] Using Principal Paths to Walk Through Music and Visual Art Style Spaces Induced by Convolutional Neural Networks
    Gardini, E.
    Ferrarotti, M. J.
    Cavalli, A.
    Decherchi, S.
    [J]. COGNITIVE COMPUTATION, 2021, 13 (02) : 570 - 582
  • [35] Using Principal Paths to Walk Through Music and Visual Art Style Spaces Induced by Convolutional Neural Networks
    E. Gardini
    M. J. Ferrarotti
    A. Cavalli
    S. Decherchi
    [J]. Cognitive Computation, 2021, 13 : 570 - 582
  • [36] Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: A case study of granular soils
    Polo-Mendoza, Rodrigo
    Duque, Jose
    Masin, David
    [J]. CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [37] Thermal analysis of large granular assemblies using a hierarchical approach coupling the macro-scale finite element method and micro-scale discrete element method through artificial neural networks
    Peeketi, Akhil Reddy
    Desu, Raghuram Karthik
    Kumbhar, Pramod
    Annabattula, Ratna Kumar
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2019, 6 (04) : 811 - 822
  • [38] Thermal analysis of large granular assemblies using a hierarchical approach coupling the macro-scale finite element method and micro-scale discrete element method through artificial neural networks
    Akhil Reddy Peeketi
    Raghuram Karthik Desu
    Pramod Kumbhar
    Ratna Kumar Annabattula
    [J]. Computational Particle Mechanics, 2019, 6 : 811 - 822
  • [39] Optimization of type-1, interval type-2 and general type-2 fuzzy inference systems using a hierarchical genetic algorithm for modular granular neural networks
    Melin, Patricia
    Sanchez, Daniela
    [J]. GRANULAR COMPUTING, 2019, 4 (02) : 211 - 236
  • [40] Optimization of type-1, interval type-2 and general type-2 fuzzy inference systems using a hierarchical genetic algorithm for modular granular neural networks
    Patricia Melin
    Daniela Sánchez
    [J]. Granular Computing, 2019, 4 : 211 - 236