Lightweight Multilingual Entity Extraction and Linking

被引:38
|
作者
Pappu, Aasish [1 ]
Blanco, Roi [2 ]
Mehdad, Yashar [3 ]
Stent, Amanda [4 ]
Thadani, Kapil [1 ]
机构
[1] Yahoo Res, New York, NY USA
[2] Univ A Coruna, La Coruna, Spain
[3] AirBnB, San Francisco, CA USA
[4] Bloomberg LP, New York, NY USA
关键词
D O I
10.1145/3018661.3018724
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Text analytics systems often rely heavily on detecting and linking entity mentions in documents to knowledge bases for downstream applications such as sentiment analysis, question answering and recommender systems. A major challenge for this task is to be able to accurately detect entities in new languages with limited labeled resources. In this paper we present an accurate and lightweight(1) multilingual named entity recognition (NER) and linking (NEL) system. The contributions of this paper are three-fold: 1) Lightweight named entity recognition with competitive accuracy; 2) Candidate entity retrieval that uses search click log data and entity embeddings to achieve high precision with a low memory footprint; and 3) efficient entity disambiguation. Our system achieves state-of-the-art performance on TAC KBP 2013 multilingual data and on English AIDA-CONLL data.
引用
收藏
页码:365 / 374
页数:10
相关论文
共 50 条
  • [31] Joint Entity Linking and Relation Extraction with Neural Networks for Knowledge Base Population
    Zhang, Zhenyu
    Shu, Xiaobo
    Liu, Tingwen
    Fang, Zheng
    Li, Quangang
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [33] Bootstrapping Multilingual Relation Discovery Using English Wikipedia and Wikimedia-Induced Entity Extraction
    Schone, Patrick
    Allison, Tim
    Giannella, Chris
    Pfeifer, Craig
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 944 - 951
  • [34] Entity Linking and Retrieval
    Meij, Edgar
    Balog, Krisztian
    Odijk, Daan
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 1127 - 1127
  • [35] Visual Entity Linking
    Tilak, Neha
    Gandhi, Sunil
    Oates, Tim
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 665 - 672
  • [36] Enhanced Entity Annotations for Multilingual Corpora
    Strobl, Michael
    Trabelsi, Amine
    Zaiane, Osmar
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 3732 - 3740
  • [37] Multilingual Transformers for Named Entity Recognition
    Viksna, Rinalds
    Skadin, Inguna
    BALTIC JOURNAL OF MODERN COMPUTING, 2022, 10 (03): : 457 - 469
  • [38] Enhancing Entity Linking with Contextualized Entity Embeddings
    Xu, Zhenran
    Chen, Yulin
    Shi, Senbao
    Hu, Baotian
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT II, 2022, 13552 : 228 - 239
  • [39] Combining Word and Entity Embeddings for Entity Linking
    Moreno, Jose G.
    Besancon, Romaric
    Beaumont, Romain
    D'hondt, Eva
    Ligozat, Anne-Laure
    Rosset, Sophie
    Tannier, Xavier
    Grau, Brigitte
    SEMANTIC WEB ( ESWC 2017), PT I, 2017, 10249 : 337 - 352
  • [40] ELES: Combining Entity Linking and Entity Summarization
    Thalhammer, Andreas
    Rettinger, Achim
    WEB ENGINEERING (ICWE 2016), 2016, 9671 : 547 - 550