Well-posed and ill-posed optimal control problems

被引:3
|
作者
Walczak, S [1 ]
机构
[1] Univ Lodz, Fac Math, PL-90131 Lodz, Poland
关键词
optimal control; well-posed problems; continuous dependence on parameters; stability analysis; robust systems;
D O I
10.1023/A:1017518006179
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, an optimal control problem with variable parameters and variable initial data is considered for some systems of ordinary differential equations. On the basis of variational methods, some sufficient conditions, under which the optimal processes depend continuously on the initial data and parameters of the system, are proved.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 50 条
  • [21] Optimal experimental design for ill-posed problems
    Bardow, Andre
    [J]. 16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 173 - 178
  • [22] Well and ill-posed problems for the KdV and Kawahara equations
    Doronin, Gleb G.
    Larkin, Nikolai A.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 133 - 137
  • [23] A Note on Well-posed Problems
    Corvellec, Jean-Noel
    Lucchetti, Roberto
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (02) : 181 - 189
  • [24] ILL-POSED PROBLEMS IN RHEOLOGY
    HONERKAMP, J
    [J]. RHEOLOGICA ACTA, 1989, 28 (05) : 363 - 371
  • [25] Ill-posed problems in mechanics
    V. Ph. Zhuravlev
    [J]. Mechanics of Solids, 2016, 51 : 538 - 541
  • [26] Proximal penalty method for ill-posed parabolic optimal control problems
    Kaplan, A
    Tichatschke, R
    [J]. CONTROL AND ESTIMATION OF DISTRIBUTED PARAMETER SYSTEMS, 1998, 126 : 169 - 182
  • [27] SINGULAR PERTURBATIONS AND PROBLEMS OF OPTIMAL-CONTROL - AN ILL-POSED CASE
    HARAUX, A
    MURAT, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (02): : 93 - 96
  • [28] Well-posed equilibrium problems
    Bianchi, M.
    Kassay, G.
    Pini, R.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) : 460 - 468
  • [29] APPROXIMATIONS FOR ILL-POSED PROBLEMS
    LINZ, P
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1984, 7 (04) : 267 - 277
  • [30] PITFALLS IN ILL-POSED PROBLEMS
    KAHAN, WM
    [J]. SIAM REVIEW, 1976, 18 (04) : 810 - 811