Classification of solvable Lie algebras

被引:64
|
作者
de Graaf, WA [1 ]
机构
[1] Johann Radon Inst Computat & Appl Math, Linz, Austria
关键词
Lie algebras; classification; Grobner bases;
D O I
10.1080/10586458.2005.10128911
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe a simple method for obtaining a classification of small-dimensional solvable Lie algebras. Using this method, we obtain the classification of three- and four-dimensional solvable Lie algebras (over fields of any characteristic). Precise conditions for isomorphism are given.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [41] Solvable Lie Algebras with Quasifiliform Nilradicals
    Wang, Yan
    Lin, Jie
    Deng, Shaoqiang
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (11) : 4052 - 4067
  • [42] Cohomology of solvable lie algebras and solvmanifolds
    Millionshchikov, DV
    MATHEMATICAL NOTES, 2005, 77 (1-2) : 61 - 71
  • [43] Solvable Lie algebras derived from Lie hyperalgebras
    Safa, Hesam
    Norouzi, Morteza
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 1934 - 1941
  • [44] On the strong rigidity of solvable Lie algebras
    Petit, T
    Noncommutative Algebra and Geometry, 2006, 243 : 162 - 174
  • [45] PRIMITIVE IDEALS OF ENVELOPING ALGEBRAS OF SOLVABLE LIE ALGEBRAS
    CONZE, N
    VERGNE, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (15): : 958 - &
  • [46] Classification and isomorphisms of non-degenerate solvable Lie algebras of maximal rank
    Zhang, Haishan
    Lu, Caihui
    ALGEBRA COLLOQUIUM, 2008, 15 (02) : 347 - 360
  • [47] Classification of solvable real rigid Lie algebras with a nilradical of dimension n ≤ 6
    Bermudez, J. M. Ancochea
    Campoamor-Stursberg, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 54 - 75
  • [48] Simple Lie-Solvable Pre-Lie Algebras
    V. N. Zhelyabin
    A. P. Pozhidaev
    U. U. Umirbaev
    Algebra and Logic, 2022, 61 : 160 - 165
  • [49] Simple Lie-Solvable Pre-Lie Algebras
    Zhelyabin, V. N.
    Pozhidaev, A. P.
    Umirbaev, U. U.
    ALGEBRA AND LOGIC, 2022, 61 (02) : 160 - 165
  • [50] Solvable Lie Algebras of Vector Fields and a Lie's Conjecture
    Grabowska, Katarzyna
    Grabowski, Janusz
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16