Projection Based Clustering of Gene Expression Data

被引:0
|
作者
Tasoulis, Sotiris K. [1 ]
Plagianakos, Vassilis P. [1 ]
Tasoulis, Dimitris K. [2 ]
机构
[1] Univ Cent Greece, Dept Comp Sci & Biomed Informat, Papassiopoulou 2-4, Lamia 35100, Greece
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
关键词
Unsupervised Clustering; Cluster Analysis; Principal Component Analysis; Kernel Density Estimation; Bioinformatics; Gene Expression Analysis; CLASSIFICATION; PREDICTION;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The microarray DNA technologies have given researchers the ability to examine, discover and monitor thousands of genes in a single experiment. Nonetheless, the tremendous amount of data that can be obtained from microarray studies presents a challenge for data analysis, mainly due to the very high data dimensionality. A particular class of clustering algorithms has been very successful in dealing with such data, utilising information driven by the Principal Component Analysis. In this paper, we investigate the application of recently proposed projection based hierarchical clustering algorithms on gene expression microarray data. The algorithms apart from identifying the clusters present in a data set also calculate their number and thus require no special knowledge about the data.
引用
收藏
页码:228 / +
页数:4
相关论文
共 50 条
  • [21] Ensemble classification for gene expression data based on parallel clustering
    Meng, Jun
    Jiang, Dingling
    Zhang, Jing
    Luan, Yushi
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2018, 20 (03) : 213 - 229
  • [22] A kernel-based clustering method for gene selection with gene expression data
    Chen, Huihui
    Zhang, Yusen
    Gutman, Ivan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 62 : 12 - 20
  • [23] Hierarchical clustering of gene expression data
    Luo, F
    Tang, K
    Khan, L
    THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, : 328 - 335
  • [24] Fuzzy clustering of gene expression data
    Futschik, ME
    Kasabov, NK
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 414 - 419
  • [25] An Incremental Clustering of Gene Expression data
    Das, Rosy
    Bhattacharyya, Dhruba K.
    Kalita, Jugal K.
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 741 - +
  • [26] Techniques for clustering gene expression data
    Kerr, G.
    Ruskin, H. J.
    Crane, M.
    Doolan, P.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (03) : 283 - 293
  • [27] Clustering analysis for gene expression data
    Chen, YD
    Ermolaeva, O
    Bittner, M
    Meltzer, P
    Trent, J
    Dougherty, ER
    Batman, S
    ADVANCES IN FLUORESCENCE SENSING TECHNOLOGY IV, PROCEEDINGS OF, 1999, 3602 : 422 - 428
  • [28] Validating clustering for gene expression data
    Yeung, KY
    Haynor, DR
    Ruzzo, WL
    BIOINFORMATICS, 2001, 17 (04) : 309 - 318
  • [29] Incorporating gene ontology in clustering gene expression data
    Kustra, Rafal
    Zagdanski, Adam
    19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2006, : 555 - +
  • [30] A ground truth based comparative study on clustering of gene expression data
    Zhu, Yitan
    Wang, Zuyi
    Miller, David J.
    Clarke, Robert
    Xuan, Jianhua
    Hoffman, Eric P.
    Wang, Yue
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2008, 13 : 3839 - 3849