Thermal energy storage and solar energy utilization enabled by novel composite sodium acetate trihydrate/sodium dihydrogen phosphate dihydrate phase change materials

被引:15
|
作者
Liu, Xingru [1 ]
Huang, Zhongliang [1 ]
Wang, Yang [1 ]
Su, Hua [1 ]
Lin, Pengcheng [1 ]
Yu, Weitai [1 ]
Chen, Ying [1 ]
机构
[1] Guangdong Univ Technol, Guangdong Prov Key Lab Funct Soft Condensed Matter, Mat & Energy Sch, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar energy; Supercooling; Phase change material; Personal thermal management; Thermoelectric power generation; PERFORMANCE; NUCLEATION;
D O I
10.1016/j.solmat.2022.111938
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sodium acetate trihydrate (SAT) with a working temperature of about 58 degrees C is a significant working medium in thermal energy storage and solar energy utilization. However, supercooling effect inevitably hinders its heat release in practical applications. Typically, nucleating agents can effectively eliminate the supercooling of SAT. A concomitant problem is that the nucleating agent addition reduces the thermal energy storage capacity. In this work, a state-of-the-art methodology is constructed to eliminate the supercooling and preserve the thermal energy storage capacity of SAT synchronously by utilizing the sodium dihydrogen phosphate dihydrate (SDPD) as a novel nucleating agent. The supercooling of SAT can be reduced from 34.8 degrees C to 0 degrees C when increasing the SDPD content from 0% to 1.2%. The corresponding latent heat is slightly increased from 227.30 Jg-1 to 248.77 Jg-1. Thermal conductivity is maintained at a relatively high level of 0.6 Wm-1K-1. Polypyrrole (PPY) with strong solar absorption is assembled with the SAT/SDPD composites to realize the solar energy harvesting. Taking the advantages of the functional components, the proposed SAT/SDPD/PPY device is applied in personal thermal management and the thermoelectric power generation to produce thermal comfort and clean electric energy by the solar-thermal conversion, thermal energy storage and thermal energy utilization. This work provides a new strategy for manufacturing advanced inorganic PCMs and paves the way for the application of inorganic PCMs toward solar energy utilization.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Macroencapsulation of sodium chloride as phase change materials for thermal energy storage
    Arconada, Noemi
    Arribas, Lucia
    Lucio, Beatriz
    Gonzalez-Aguilar, Jose
    Romero, Manuel
    SOLAR ENERGY, 2018, 167 : 1 - 9
  • [22] Long term thermal energy storage with stable supercooled sodium acetate trihydrate
    Dannemand, Mark
    Schultz, Jorgen M.
    Johansen, Jakob Berg
    Furbo, Simon
    APPLIED THERMAL ENGINEERING, 2015, 91 : 671 - 678
  • [23] Studied for epikote-sodium dihydrogen phosphate complex material of phase change energy storage
    Wang, Shou-Xu
    Du, Shi-Fa
    Wrmh, Xiao-Long
    Deng, Long-Jiang
    Gongneng Cailiao/Journal of Functional Materials, 2007, 38 (04): : 646 - 647
  • [24] XRD investigation of phase separation stability of supercooled sodium acetate trihydrate composites for thermal energy storage
    Yuan, Mengdi
    Englmair, Gerald
    Kong, Weiqiang
    Fan, Jianhua
    Xu, Chao
    JOURNAL OF ENERGY STORAGE, 2025, 108
  • [25] Development of a sodium acetate trihydrate-based phase change material for efficient solar/electric-to-thermal energy conversion
    Wu, X.
    Lv, S.
    Lu, Z.
    Zhang, Q.
    He, F.
    Li, Y.
    Zhou, Y.
    Lv, P.
    Yang, W.
    MATERIALS TODAY SUSTAINABILITY, 2023, 24
  • [26] Thermal property and latent heat energy storage behavior of sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phase change materials
    Shin, Hye Kyoung
    Park, Mira
    Kim, Hak-Yong
    Park, Soo-Jin
    APPLIED THERMAL ENGINEERING, 2015, 75 : 978 - 983
  • [27] Expanded graphite/disodium hydrogen phosphate/sodium acetate trihydrate stabilized composite phase change material for heat storage
    Ji, Xu
    Li, Haiti
    Leng, Congbin
    Li, Ming
    Fan, Rongkang
    Liu, Jiaxing
    JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2016, 11 (02):
  • [28] Study on Performance Improvement of Sodium Acetate Trihydrate in Thermal Energy Storage System by Disturbance
    Wang, Suyaola
    Wang, Chuang
    Hussain, Muhammad Bilal
    Cheng, Xingxing
    Wang, Zhiqiang
    PROCESSES, 2022, 10 (06)
  • [29] Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials
    Zhang, Yongyichuan
    Zhang, Xuelai
    Xu, Xiaofeng
    Munyalo, Jotham Muthoka
    Liu, Lu
    Liu, Xueying
    Lu, Mengyao
    Zhao, Yi
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 280 : 360 - 366
  • [30] Sodium nitrate - Diatomite composite materials for thermal energy storage
    Xu, Guizhi
    Leng, Guanghui
    Yang, Cenyu
    Qin, Yue
    Wu, Yuting
    Chen, Haisheng
    Cong, Lin
    Ding, Yulong
    SOLAR ENERGY, 2017, 146 : 494 - 502