A fast double greedy algorithm for non-monotone DR-submodular function maximization

被引:6
|
作者
Gu, Shuyang [1 ]
Shi, Ganquan [2 ]
Wu, Weili [1 ]
Lu, Changhong [2 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
[2] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
DR-submodular; bounded integer lattice; unconstrained submodular maximization; double greedy; FUNCTION SUBJECT;
D O I
10.1142/S179383092050007X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of maximizing non-monotone diminish return (DR)-submodular function on the bounded integer lattice, which is a generalization of submodular set function. DR-submodular functions consider the case that we can choose multiple copies for each element in the ground set. This generalization has many applications in machine learning. In this paper, we propose a 1/2-approximation algorithm with a running time of O(n log B), where n is the size of the ground set, B is the upper bound of integer lattice. Discovering important properties of DR-submodular function, we propose a fast double greedy algorithm which improves the running time.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [41] Stochastic Variance Reduction for DR-Submodular Maximization
    Lian, Yuefang
    Du, Donglei
    Wang, Xiao
    Xu, Dachuan
    Zhou, Yang
    ALGORITHMICA, 2024, 86 (05) : 1335 - 1364
  • [42] Greedy algorithm for maximization of semi-monotone non-submodular functions with applications
    Shi, Yishuo
    Zhao, Hui
    THEORETICAL COMPUTER SCIENCE, 2024, 1013
  • [43] Stochastic Variance Reduction for DR-Submodular Maximization
    Yuefang Lian
    Donglei Du
    Xiao Wang
    Dachuan Xu
    Yang Zhou
    Algorithmica, 2024, 86 : 1335 - 1364
  • [44] Continuous Profit Maximization: A Study of Unconstrained Dr-Submodular Maximization
    Guo, Jianxiong
    Wu, Weili
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2021, 8 (03) : 768 - 779
  • [45] Revisiting Modified Greedy Algorithm for Monotone Submodular Maximization with a Knapsack Constraint
    Tang, Jing
    Tang, Xueyan
    Lim, Andrew
    Han, Kai
    Li, Chongshou
    Yuan, Junsong
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2021, 5 (01)
  • [46] Online non-monotone diminishing return submodular maximization in the bandit setting
    Ju, Jiachen
    Wang, Xiao
    Xu, Dachuan
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, : 619 - 649
  • [47] Algorithms for Cardinality-Constrained Monotone DR-Submodular Maximization with Low Adaptivity and Query Complexity
    Suning Gong
    Qingqin Nong
    Jiazhu Fang
    Ding-Zhu Du
    Journal of Optimization Theory and Applications, 2024, 200 : 194 - 214
  • [48] Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity
    Fahrbach, Matthew
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [49] Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings
    Doskoc, Vanja
    Friedrich, Tobias
    Gobel, Andreas
    Neumann, Frank
    Neumann, Aneta
    Quinzan, Francesco
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 435 - 442
  • [50] Practical and Parallelizable Algorithms for Non-Monotone Submodular Maximization with Size Constraint
    Chen, Yixin
    Kuhnle, Alan
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 79 : 599 - 637