The asymptotic distribution of the condition number for random circulant matrices

被引:4
|
作者
Barrera, Gerardo [1 ]
Manrique-Miron, Paulo [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, PL 68,Pietari Kalmin Katu 5, Helsinki 00014, Finland
[2] Natl Polytech Inst, Mexico City 07738, DF, Mexico
基金
芬兰科学院;
关键词
Circulant random matrices; Condition number; Frechet distribution; Gumbel distribution; Lyapunov integrability condition; Rayleigh distribution; LIMITING SPECTRAL DISTRIBUTION; SAMPLE COVARIANCE MATRICES; LARGEST EIGENVALUES; FOURIER-TRANSFORMS; POISSON STATISTICS; CONVERGENCE; PERIODOGRAM; MAXIMA; TAILS; NORM;
D O I
10.1007/s10687-022-00442-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we study the limiting distribution for the joint law of the largest and the smallest singular values for random circulant matrices with generating sequence given by independent and identically distributed random elements satisfying the so-called Lyapunov condition. Under an appropriated normalization, the joint law of the extremal singular values converges in distribution, as the matrix dimension tends to infinity, to an independent product of Rayleigh and Gumbel laws. The latter implies that a normalized condition number converges in distribution to a Frechet law as the dimension of the matrix increases.
引用
收藏
页码:567 / 594
页数:28
相关论文
共 50 条