Phase transitions in the condition-number distribution of Gaussian random matrices

被引:6
|
作者
Perez Castillo, Isaac [1 ]
Katzav, Eytan [2 ]
Vivo, Pierpaolo [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Dept Sistemas Complejos, Mexico City 01000, DF, Mexico
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[3] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 05期
关键词
EIGENVALUE; ALGORITHMS;
D O I
10.1103/PhysRevE.90.050103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the statistics of the condition number kappa = lambda(max)/lambda(min) (the ratio between largest and smallest squared singular values) of N x M Gaussian random matrices. Using a Coulomb fluid technique, we derive analytically and for large N the cumulative P(kappa < x) and tail-cumulative P(kappa > x) distributions of kappa. We find that these distributions decay as P(kappa < x) approximate to exp[-beta N-2 Phi(-)(x)] and P(kappa > x) approximate to exp[-beta N Phi(+)(x)], where beta is the Dyson index of the ensemble. The left and right rate functions Phi(+/-) (x) are independent of beta and calculated exactly for any choice of the rectangularity parameter alpha = M/N - 1 > 0. Interestingly, they show a weak nonanalytic behavior at their minimum <kappa > (corresponding to the average condition number), a direct consequence of a phase transition in the associated Coulomb fluid problem. Matching the behavior of the rate functions around <kappa >, we determine exactly the scale of typical fluctuations similar to O(N-2/3) and the tails of the limiting distribution of kappa. The analytical results are in excellent agreement with numerical simulations.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Phase transitions in the condition-number distribution of Gaussian random matrices (vol 90, 050103, 2014)
    Perez Castillo, Isaac
    Katzav, Eytan
    Vivo, Pierpaolo
    [J]. PHYSICAL REVIEW E, 2020, 102 (05)
  • [2] Phase Transitions and Edge Scaling of Number Variance in Gaussian Random Matrices
    Marino, Ricardo
    Majumdar, Satya N.
    Schehr, Gregory
    Vivo, Pierpaolo
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (25)
  • [3] Spectral condition-number estimation of large sparse matrices
    Avron, Haim
    Druinsky, Alex
    Toledo, Sivan
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (03)
  • [4] The asymptotic distribution of the condition number for random circulant matrices
    Gerardo Barrera
    Paulo Manrique-Mirón
    [J]. Extremes, 2022, 25 : 567 - 594
  • [5] The Exact Distribution of the Condition Number of Complex Random Matrices
    Shi, Lin
    Gan, Taibin
    Zhu, Hong
    Gu, Xianming
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [6] The asymptotic distribution of the condition number for random circulant matrices
    Barrera, Gerardo
    Manrique-Miron, Paulo
    [J]. EXTREMES, 2022, 25 (04) : 567 - 594
  • [7] Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
    Monajemi, Hatef
    Jafarpour, Sina
    Gavish, Matan
    Donoho, David L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (04) : 1181 - 1186
  • [8] Condition numbers of gaussian random matrices
    Chen, ZZ
    Dongarra, JJ
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (03) : 603 - 620
  • [9] On the condition number anomaly of Gaussian correlation matrices
    Zimmermann, R.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 466 : 512 - 526
  • [10] Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices
    Valov, Alexander
    Meerson, Baruch
    Sasorov, Pavel, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (06)