Copolymerization is an efficient method to modulate the intrinsic properties of graphitic carbon nitride (g-C3N4). Herein, carbon ring and stereo molecular scaffold co-doped g-C3N4 heterostrcutural nanosheets are constructed for simultaneously enhanced photocatalytic hydrogen evolution under ordinary pressure. The carbon ring changes the in-plane connection of g-C3N4 by the sp(2)-hybridized C-N bonds, extending the delocalization of pi electrons. The stereo molecular scaffold loses the interlayer stacking of bulk g-C3N4 for easier exfoliation. The synergistic effect of the above two aspects can greatly improve the photocatalytic performance of AGCN. After thermal exfoliation, the highest photocatalytic hydrogen generation activity of A(0)(.2)G(0)(.3)CN-E sample is 12.9 times higher than that of MCN. This work provides a strategy to design g-C3N4 photocatalysts with enhanced photocatalytic activity by using synergistic effect.
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
Wu, Xinhe
Wang, Xuefei
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Hubei, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
Wang, Xuefei
Wang, Fazhou
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
Wang, Fazhou
Yu, Huogen
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Hubei, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China