3D Point Cloud Object Detection with Multi-View Convolutional Neural Network

被引:0
|
作者
Pang, Guan [1 ]
Neumann, Ulrich [1 ]
机构
[1] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90089 USA
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
关键词
RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficient detection of three dimensional (3D) objects in point clouds is a challenging problem. Performing 3D descriptor matching or 3D scanning-window search with detector are both time-consuming due to the 3-dimensional complexity. One solution is to project 3D point cloud into 2D images and thus transform the 3D detection problem into 2D space, but projection at multiple viewpoints and rotations produce a large amount of 2D detection tasks, which limit the performance and complexity of the 2D detection algorithm choice. We propose to use convolutional neural network (CNN) for the 2D detection task, because it can handle all viewpoints and rotations for the same class of object together, as well as predicting multiple classes of objects with the same network, without the need for individual detector for each object class. We further improve the detection efficiency by concatenating two extra levels of early rejection networks with binary outputs before the multi-class detection network. Experiments show that our method has competitive overall performance with at least one-order of magnitude speedup comparing with latest 3D point cloud detection methods.
引用
收藏
页码:585 / 590
页数:6
相关论文
共 50 条
  • [21] 3D model retrieval based on multi-view attentional convolutional neural network
    Liu, An-An
    Zhou, He-Yu
    Li, Meng-Jie
    Nie, Wei-Zhi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (7-8) : 4699 - 4711
  • [22] 3D model retrieval based on multi-view attentional convolutional neural network
    An-An Liu
    He-Yu Zhou
    Meng-Jie Li
    Wei-Zhi Nie
    Multimedia Tools and Applications, 2020, 79 : 4699 - 4711
  • [23] Multi-view convolutional vision transformer for 3D object recognition
    Li, Jie
    Liu, Zhao
    Li, Li
    Lin, Junqin
    Yao, Jian
    Tu, Jingmin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [24] PPMGNet: A Neural Network Algorithm for Point Cloud 3D Object Detection
    Peng, Xiaohong
    Wang, Sen
    Geng, Shuqin
    Zhang, Zhe
    Tang, Haonan
    Wang, Yu
    Wang, Jie
    Li, Xuefeng
    Du, Jianing
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2020, : 53 - 56
  • [25] Viewpoint Equivariance for Multi-View 3D Object Detection
    Chen, Dian
    Li, Jie
    Guizilini, Vitor
    Ambrus, Rares
    Gaidon, Adrien
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9213 - 9222
  • [26] Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
    Shi, Weijing
    Rajkumar, Ragunathan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1708 - 1716
  • [27] Multi-view Convolutional Neural Networks for 3D Shape Recognition
    Su, Hang
    Maji, Subhransu
    Kalogerakis, Evangelos
    Learned-Miller, Erik
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 945 - 953
  • [28] Impression Estimation Model of 3D Objects Using Multi-View Convolutional Neural Network
    Sakashita, Keisuke
    Tobitani, Kensuke
    Taguchi, Koichi
    Hashimoto, Manabu
    Tani, Iori
    Hashimoto, Sho
    Katahira, Kenji
    Nagata, Noriko
    FRONTIERS OF COMPUTER VISION (IW-FCV 2022), 2022, 1578 : 343 - 355
  • [29] Group-Pair Convolutional Neural Networks for Multi-View Based 3D Object Retrieval
    Gao, Zan
    Wang, Deyu
    He, Xiangnan
    Zhang, Hua
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2223 - 2231
  • [30] Multi-view attention-convolution pooling network for 3D point cloud classification
    Wenju Wang
    Tao Wang
    Yu Cai
    Applied Intelligence, 2022, 52 : 14787 - 14798