Particle estimation algorithm using correlation of observation for nonlinear system state

被引:7
|
作者
Liang, J. [1 ]
Peng, X. -Y. [1 ]
Ma, Y. -T. [1 ]
机构
[1] Harbin Inst Technol, Dept Instrument Sci & Technol, Harbin 150080, Peoples R China
关键词
6;
D O I
10.1049/el:20080179
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A particle estimation algorithm, where the weight of the particle is proportional to the correlation coefficient of observations, is presented. When the likelihood has a bimodal nature, this algorithm leads to more accurate state estimates than SIR, APF, RPF, and GPF.
引用
收藏
页码:553 / 555
页数:3
相关论文
共 50 条
  • [41] MultiPDF particle filtering in state estimation of nonlinear objects
    Jacek Michalski
    Piotr Kozierski
    Wojciech Giernacki
    Joanna Zietkiewicz
    Marek Retinger
    Nonlinear Dynamics, 2021, 106 : 2165 - 2182
  • [42] Adaptive Gaussian Particle Filter for Nonlinear State Estimation
    Kong Liang
    Kong Lingfu
    Wu Peiliang
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 2146 - 2150
  • [43] Sequential State and Observation Noise Covariance Estimation Using Combined Ensemble Kalman and Particle Filters
    Frei, Marco
    Kuensch, Hans R.
    MONTHLY WEATHER REVIEW, 2012, 140 (05) : 1476 - 1495
  • [44] Using the Kalman Method for State Estimation of a System with Nonlinear Motor.
    Leporskii, A.A.
    Izvestia vyssih ucebnyh zavedenij. Priborostroenie, 1980, 23 (09): : 58 - 62
  • [45] Possibility of state estimation of nonlinear dynamic system using interval analysis
    Zbranek, Pavel
    Vesely, Libor
    ANNALS OF DAAAM FOR 2007 & PROCEEDINGS OF THE 18TH INTERNATIONAL DAAAM SYMPOSIUM: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON CREATIVITY, RESPONSIBILITY, AND ETHICS OF ENGINEERS, 2007, : 825 - 826
  • [46] Power System Nonlinear State Estimation Using Distributed Semidefinite Programming
    Zhu, Hao
    Giannakis, Georgios B.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (06) : 1039 - 1050
  • [47] Nonlinear Estimation With State-Dependent Gaussian Observation Noise
    Spinello, Davide
    Stilwell, Daniel J.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (06) : 1358 - 1366
  • [48] State Estimation Algorithm for Nonlinear System with Unknown Parameter Based on Minimum Perturbation Principle
    Zhao, Kai
    Yu, Han
    Zhou, Yang
    Li, Yuan-Yuan
    Lu, Chao
    Xiao, Lu
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3026 - 3031
  • [49] State Estimation Algorithm for Nonlinear System with Unknown Parameter Based on Minimum Perturbation Principle
    Beijing Institute of Astronautical Systems Engineering, Beijing
    100076, China
    Chinese Control Conf., CCC, 1934, (3026-3031):
  • [50] Estimation of the parameters of the servo drive system using Particle Swarm Optimization algorithm
    Zhu, Helin
    Choi, Jae Hyuk
    Park, Sang Uk
    Lee, Jusuk
    Lee, Hyong Gun
    Mok, Hyung Soo
    2018 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-NIIGATA 2018 -ECCE ASIA), 2018, : 1336 - 1340