Dendritic Spine Dynamics Regulate the Long-Term Stability of Synaptic Plasticity

被引:51
|
作者
O'Donnell, Cian [1 ,2 ]
Nolan, Matthew F. [3 ]
van Rossum, Mark C. W. [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Neuroinformat Doctoral Training Ctr, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Edinburgh, Sch Informat, Inst Adapt & Neural Computat, Edinburgh EH8 9AB, Midlothian, Scotland
[3] Univ Edinburgh, Ctr Integrat Physiol, Edinburgh EH8 9XD, Midlothian, Scotland
来源
JOURNAL OF NEUROSCIENCE | 2011年 / 31卷 / 45期
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
TIMING-DEPENDENT PLASTICITY; NEOCORTEX IN-VIVO; ASYMMETRIC HEBBIAN PLASTICITY; RAT VISUAL-CORTEX; CALCIUM-CHANNELS; HIPPOCAMPAL SYNAPSES; ULTRASTRUCTURAL ANALYSIS; STRUCTURAL PLASTICITY; NMDA RECEPTORS; ADULT CORTEX;
D O I
10.1523/JNEUROSCI.2520-11.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Long-term synaptic plasticity requires postsynaptic influx of Ca(2+) and is accompanied by changes in dendritic spine size. Unless Ca(2+) influx mechanisms and spine volume scale proportionally, changes in spine size will modify spine Ca(2+) concentrations during subsequent synaptic activation. We show that the relationship between Ca(2+) influx and spine volume is a fundamental determinant of synaptic stability. If Ca(2+) influx is undercompensated for increases in spine size, then strong synapses are stabilized and synaptic strength distributions have a single peak. In contrast, overcompensation of Ca(2+) influx leads to binary, persistent synaptic strengths with double-peaked distributions. Biophysical simulations predict that CA1 pyramidal neuron spines are undercompensating. This unifies experimental findings that weak synapses are more plastic than strong synapses, that synaptic strengths are unimodally distributed, and that potentiation saturates for a given stimulus strength. We conclude that structural plasticity provides a simple, local, and general mechanism that allows dendritic spines to foster both rapid memory formation and persistent memory storage.
引用
收藏
页码:16142 / 16156
页数:15
相关论文
共 50 条
  • [41] Selective modulation of long-term synaptic plasticity by lithium
    Normann, C
    Niehusmann, P
    BIPOLAR DISORDERS, 2005, 7 : 82 - 82
  • [42] LONG-TERM SYNAPTIC PLASTICITY INDUCED IN THE PRIMATE HIPPOCAMPUS
    Tamura, Ryoi
    Eifuku, Satoshi
    Sugimori, Michiya
    Uwano, Teruko
    Ono, Taketoshi
    JOURNAL OF PHYSIOLOGICAL SCIENCES, 2009, 59 : 184 - 184
  • [43] Long-term depression and other synaptic plasticity in the cerebellum
    Hirano, Tomoo
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES, 2013, 89 (05): : 183 - 195
  • [44] Long-Term Synaptic Plasticity in Rat Barrel Cortex
    Han, Yong
    Huang, Ming-De
    Sun, Man-Li
    Duan, Shumin
    Yu, Yan-Qin
    CEREBRAL CORTEX, 2015, 25 (09) : 2741 - 2751
  • [45] SYNAPTIC PLASTICITY Unmasked: dendritic mRNA dynamics
    Whalley, Katherine
    NATURE REVIEWS NEUROSCIENCE, 2014, 15 (03) : 138 - 138
  • [46] Activity-dependent actin dynamics are required for the maintenance of long-term plasticity and for synaptic capture
    Fonseca, Rosalina
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2012, 35 (02) : 195 - 206
  • [47] SynGAP isoforms differentially regulate synaptic plasticity and dendritic development
    Araki, Yoichi
    Hong, Ingie
    Gamache, Timothy R.
    Ju, Shaowen
    Collado-Torres, Leonardo
    Shin, Joo Heon
    Huganir, Richard L.
    ELIFE, 2020, 9 : 1 - 28
  • [48] Principles of long-term dynamics of dendritic spines
    Yaumatsu, Nobuaki
    Matsuzaki, Masanori
    Miyazaki, Takashi
    Noguchi, Jun
    Kasai, Haruo
    NEUROSCIENCE RESEARCH, 2008, 61 : S80 - S80
  • [49] Interactions between drebrin and Ras regulate dendritic spine plasticity
    Biou, Virginie
    Brinkhaus, Heike
    Malenka, Robert C.
    Matus, Andrew
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2008, 27 (11) : 2847 - 2859
  • [50] Principles of Long-Term Dynamics of Dendritic Spines
    Yasumatsu, Nobuaki
    Matsuzaki, Masanori
    Miyazaki, Takashi
    Noguchi, Jun
    Kasai, Haruo
    JOURNAL OF NEUROSCIENCE, 2008, 28 (50): : 13592 - 13608