Dendritic Spine Dynamics Regulate the Long-Term Stability of Synaptic Plasticity

被引:51
|
作者
O'Donnell, Cian [1 ,2 ]
Nolan, Matthew F. [3 ]
van Rossum, Mark C. W. [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Neuroinformat Doctoral Training Ctr, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Edinburgh, Sch Informat, Inst Adapt & Neural Computat, Edinburgh EH8 9AB, Midlothian, Scotland
[3] Univ Edinburgh, Ctr Integrat Physiol, Edinburgh EH8 9XD, Midlothian, Scotland
来源
JOURNAL OF NEUROSCIENCE | 2011年 / 31卷 / 45期
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
TIMING-DEPENDENT PLASTICITY; NEOCORTEX IN-VIVO; ASYMMETRIC HEBBIAN PLASTICITY; RAT VISUAL-CORTEX; CALCIUM-CHANNELS; HIPPOCAMPAL SYNAPSES; ULTRASTRUCTURAL ANALYSIS; STRUCTURAL PLASTICITY; NMDA RECEPTORS; ADULT CORTEX;
D O I
10.1523/JNEUROSCI.2520-11.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Long-term synaptic plasticity requires postsynaptic influx of Ca(2+) and is accompanied by changes in dendritic spine size. Unless Ca(2+) influx mechanisms and spine volume scale proportionally, changes in spine size will modify spine Ca(2+) concentrations during subsequent synaptic activation. We show that the relationship between Ca(2+) influx and spine volume is a fundamental determinant of synaptic stability. If Ca(2+) influx is undercompensated for increases in spine size, then strong synapses are stabilized and synaptic strength distributions have a single peak. In contrast, overcompensation of Ca(2+) influx leads to binary, persistent synaptic strengths with double-peaked distributions. Biophysical simulations predict that CA1 pyramidal neuron spines are undercompensating. This unifies experimental findings that weak synapses are more plastic than strong synapses, that synaptic strengths are unimodally distributed, and that potentiation saturates for a given stimulus strength. We conclude that structural plasticity provides a simple, local, and general mechanism that allows dendritic spines to foster both rapid memory formation and persistent memory storage.
引用
收藏
页码:16142 / 16156
页数:15
相关论文
共 50 条
  • [1] Dendritic spine changes associated with hippocampal long-term synaptic plasticity
    Engert, Florian
    Bonhoeffer, Tobias
    Nature, 1999, 398 (6731): : 66 - 70
  • [2] Dendritic spine changes associated with hippocampal long-term synaptic plasticity
    Florian Engert
    Tobias Bonhoeffer
    Nature, 1999, 399 : 66 - 70
  • [3] Dendritic spine changes associated with hippocampal long-term synaptic plasticity
    Engert, F
    Bonhoeffer, T
    NATURE, 1999, 399 (6731) : 66 - 70
  • [4] Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity
    Jaworski, Jacek
    Kapitein, Lukas C.
    Gouveia, Susana Montenegro
    Dortland, Bjorn R.
    Wulf, Phebe S.
    Grigoriev, Ilya
    Camera, Paola
    Spangler, Samantha A.
    Di Stefano, Paola
    Demmers, Jeroen
    Krugers, Harm
    Defilippi, Paola
    Akhmanova, Anna
    Hoogenraad, Casper C.
    NEURON, 2009, 61 (01) : 85 - 100
  • [5] The role of dendritic filtering in associative long-term synaptic plasticity
    Sourdet, V
    Debanne, D
    LEARNING & MEMORY, 1999, 6 (05) : 422 - 447
  • [6] Long-term dendritic spine stability in the adult cortex
    Grutzendler, J
    Kasthuri, N
    Gan, WB
    NATURE, 2002, 420 (6917) : 812 - 816
  • [7] Long-term dendritic spine stability in the adult cortex
    Jaime Grutzendler
    Narayanan Kasthuri
    Wen-Biao Gan
    Nature, 2002, 420 : 812 - 816
  • [8] Two-photon microscopy reveals dendritic spine changes associated with long-term synaptic plasticity in the hippocampus
    Engert, F
    Bonhoeffer, T
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 : 31 - 31
  • [9] Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity
    Fu, Zhong-Xiao
    Tan, Xiao
    Fang, Huaqiang
    Lau, Pak-Ming
    Wang, Xianhua
    Cheng, Heping
    Bi, Guo-Qiang
    NATURE COMMUNICATIONS, 2017, 8
  • [10] Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity
    Zhong-Xiao Fu
    Xiao Tan
    Huaqiang Fang
    Pak-Ming Lau
    Xianhua Wang
    Heping Cheng
    Guo-Qiang Bi
    Nature Communications, 8