The boundedness of the generalized anisotropic potentials with rough kernels in the Lorentz spaces

被引:1
|
作者
Guliyev, Vagif S. [2 ,3 ]
Serbetci, Ayhan [1 ]
Ekincioglu, Ismail [4 ]
机构
[1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
[2] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[3] Azerbaijan Acad Sci, Inst Math & Mech, Baku, Azerbaijan
[4] Dumlupinar Univ, Dept Math, Kutahya, Turkey
关键词
Laplace-Bessel differential operator; generalized anisotropic potential integral; rough anisotropic fractional integral; Lorentz spaces; SINGULAR-INTEGRALS; SOBOLEV THEOREM; OPERATORS;
D O I
10.1080/10652469.2010.548334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the generalized anisotropic potential integral K(alpha,gamma) circle times f and anisotropic fractional integral I(Omega,alpha,gamma) f with rough kernels, associated with the Laplace-Bessel differential operator Delta(B). We prove that the operator f -> K(alpha,gamma) circle times f is bounded from the Lorentz spaces L(p,r,gamma) (R(k)(n),(+)) to L(q,s,gamma) (R(k)(n),(+)) for 1 <= p < q <= infinity, 1 <= r <= s <= infinity. As a result of this, we get the necessary and sufficient conditions for the boundedness of I(Omega,alpha,gamma) from the Lorentz spaces L(p,s,gamma) (R(k)(n),(+)) to L(q,r,gamma) (R(k)(n),(+)), 1 < p < q < infinity, 1 <= r <= s <= 8 and from L(1,r,gamma) (R(k)(n),(+)) to L(q,infinity,gamma) (R(k)(n),(+)) = WL(q,gamma) (R(k)(n),(+)), 1 < q < infinity, 1 <= r <= 8. Furthermore, for the limiting case p = Q/alpha, we give an analogue of Adams' theorem on the exponential integrability of I(Omega,alpha,gamma) in L(Q/alpha,gamma) (R(k)(n),(+)).
引用
收藏
页码:919 / 935
页数:17
相关论文
共 50 条
  • [21] Fractional multilinear integrals with rough kernels on generalized weighted Morrey spaces
    Akbulut, Ali
    Hasanov, Amil
    OPEN MATHEMATICS, 2016, 14 : 1023 - 1038
  • [22] FRACTIONAL INTEGRAL OPERATORS WITH HOMOGENEOUS KERNELS ON GENERALIZED LORENTZ-MORREY SPACES
    Yee, Tat-Leung
    Ho, Kwok Pun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01): : 17 - 30
  • [23] Necessary and sufficient conditions for the boundedness of rough B-fractional integral operators in the Lorentz spaces
    Guliyev, Vagif S.
    Serbetci, Ayhan
    Ekincioglu, Ismail
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) : 425 - 437
  • [24] Boundedness for parabolic singular integral with rough kernels and its commutators on Triebel-Lizorkin spaces
    Shuang Ping Tao
    Yao Ming Niu
    Acta Mathematica Sinica, English Series, 2011, 27 : 1783 - 1802
  • [25] Boundedness for parabolic singular integral with rough kernels and its commutators on Triebel-Lizorkin spaces
    Tao, Shuang Ping
    Niu, Yao Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (09) : 1783 - 1802
  • [26] Lp boundedness for parabolic Littlewood-Paley operators with rough kernels belonging to block spaces
    Dong Xiang Chen
    Shan Zhen Lu
    Acta Mathematica Sinica, English Series, 2010, 26 : 277 - 286
  • [27] Boundedness for Parametrized Littlewood-Paley Operators with Rough Kernels on Weighted Weak Hardy Spaces
    Wei, Ximei
    Tao, Shuangping
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [28] Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces
    Yanlong Shi
    Zengyan Si
    Xiangxing Tao
    Yafeng Shi
    Journal of Inequalities and Applications, 2016
  • [29] Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces
    Shi, Yanlong
    Si, Zengyan
    Tao, Xiangxing
    Shi, Yafeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 19
  • [30] Boundedness of the Hilbert transform on weighted Lorentz spaces
    Agora, Elona
    Carro, Maria J.
    Soria, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 218 - 229