The boundedness of the generalized anisotropic potentials with rough kernels in the Lorentz spaces

被引:1
|
作者
Guliyev, Vagif S. [2 ,3 ]
Serbetci, Ayhan [1 ]
Ekincioglu, Ismail [4 ]
机构
[1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
[2] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[3] Azerbaijan Acad Sci, Inst Math & Mech, Baku, Azerbaijan
[4] Dumlupinar Univ, Dept Math, Kutahya, Turkey
关键词
Laplace-Bessel differential operator; generalized anisotropic potential integral; rough anisotropic fractional integral; Lorentz spaces; SINGULAR-INTEGRALS; SOBOLEV THEOREM; OPERATORS;
D O I
10.1080/10652469.2010.548334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the generalized anisotropic potential integral K(alpha,gamma) circle times f and anisotropic fractional integral I(Omega,alpha,gamma) f with rough kernels, associated with the Laplace-Bessel differential operator Delta(B). We prove that the operator f -> K(alpha,gamma) circle times f is bounded from the Lorentz spaces L(p,r,gamma) (R(k)(n),(+)) to L(q,s,gamma) (R(k)(n),(+)) for 1 <= p < q <= infinity, 1 <= r <= s <= infinity. As a result of this, we get the necessary and sufficient conditions for the boundedness of I(Omega,alpha,gamma) from the Lorentz spaces L(p,s,gamma) (R(k)(n),(+)) to L(q,r,gamma) (R(k)(n),(+)), 1 < p < q < infinity, 1 <= r <= s <= 8 and from L(1,r,gamma) (R(k)(n),(+)) to L(q,infinity,gamma) (R(k)(n),(+)) = WL(q,gamma) (R(k)(n),(+)), 1 < q < infinity, 1 <= r <= 8. Furthermore, for the limiting case p = Q/alpha, we give an analogue of Adams' theorem on the exponential integrability of I(Omega,alpha,gamma) in L(Q/alpha,gamma) (R(k)(n),(+)).
引用
收藏
页码:919 / 935
页数:17
相关论文
共 50 条
  • [1] Boundedness of Sparse and Rough Operators on Weighted Lorentz Spaces
    Sergi Baena-Miret
    María J. Carro
    Journal of Fourier Analysis and Applications, 2021, 27
  • [2] Boundedness of Sparse and Rough Operators on Weighted Lorentz Spaces
    Baena-Miret, Sergi
    Carro, Maria J.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (03)
  • [3] Boundedness of Sublinear Operators with Rough Kernels on Weighted Morrey Spaces
    Shi, Shaoguang
    Fu, Zunwei
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [4] ON THE BOUNDEDNESS OF A GENERALIZED FRACTIONAL-MAXIMAL OPERATOR IN LORENTZ SPACES
    Abek, A. N.
    Turgumbayev, M. Zh.
    Suleimenova, Z. R.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 118 (02): : 3 - 10
  • [5] Boundedness of Multilinear Commutators with Rough Kernels on Morrey-Herz Spaces
    Qiaoni Li
    Shuangping Tao
    Analysis in Theory and Applications, 2013, 29 (03) : 289 - 307
  • [6] BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON THE VARIABLE HARDY SPACES
    Rocha, Pablo
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (02) : 255 - 273
  • [7] BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON SPACES OF HOMOGENEOUS TYPE
    Liu, Liguang
    Yang, Dachun
    Zhou, Yuan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 867 - 885
  • [8] Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
    Bo Li
    Minfeng Liao
    Baode Li
    Journal of Inequalities and Applications, 2017
  • [9] Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces
    Chun-jie Zhang
    Yan-dan Zhang
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 90 - 100
  • [10] Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
    Li, Bo
    Liao, Minfeng
    Li, Baode
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,