Multipolar Resonances with Designer Tunability Using VO2 Phase-Change Materials

被引:19
|
作者
John, Jimmy [1 ]
Gutierrez, Yael [2 ]
Zhang, Zhen [3 ]
Karl, Helmut [4 ]
Ramanathan, Shriram [3 ]
Orobtchouk, Regis [1 ]
Moreno, Fernando [2 ]
Cueff, Sebastien [1 ]
机构
[1] Ecole Cent Lyon, CNRS, UMR 5270, INL, F-69134 Ecully, France
[2] Univ Cantabria, Dept Appl Phys, Avda Los Castros S-N, E-39005 Santander, Spain
[3] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[4] Univ Augsburg, Lehrstuhl Experimentalphys 4, D-86159 Augsburg, Germany
来源
PHYSICAL REVIEW APPLIED | 2020年 / 13卷 / 04期
关键词
OPTICAL-PROPERTIES; METAL NANOPARTICLES; TRANSITION; NANOPHOTONICS; NANOCRYSTALS; SCATTERING; SHAPE; SIZE;
D O I
10.1103/PhysRevApplied.13.044053
中图分类号
O59 [应用物理学];
学科分类号
摘要
Subwavelength nanoparticles can support electromagnetic resonances with distinct features depending on their size, shape, and nature. For example, electric and magnetic Mie resonances occur in dielectric particles, while plasmonic resonances appear in metals. Here, we experimentally demonstrate that the multipolar resonances hosted by VO2 nanocrystals can be dynamically tuned and switched thanks to the insulator-to-metal transition of VO2. Using both Mie theory and Maxwell-Garnett effective-medium theory, we retrieve the complex refractive index of the effective medium composed of a slab of VO2 nanospheres embedded in SiO2 and show that such a resulting metamaterial presents distinct optical tunability compared to unpatterned VO2. We further show that this approach provides a new degree of freedom to design low-loss phase-change metamaterials with record large figure of merit (Delta n/Delta k) and designer optical tunability.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Terahertz-absorbing,dual-polarization converting supersurface structures based on the phase-change material VO2
    Chen, Linyue
    Gao, Yulong
    Zhao, Ling
    Wang, Jiayun
    Qu, Zeng
    Zhang, Binzhen
    Duan, Junping
    OPTICS COMMUNICATIONS, 2024, 573
  • [32] PHASE TRANSITION IN VO2
    KOSUGE, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1967, 22 (02) : 551 - +
  • [33] PHASE TRANSITION IN VO2
    KAWAKUBO, T
    NAKAGAWA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1964, 19 (04) : 517 - +
  • [34] Multistage smart radiator with gradient emittance based on phase change materials VO2/GST/IST
    Xie, Bowei
    Zhang, Shangyu
    Zhang, Wenjie
    Zhao, Junming
    Liu, Linhua
    APPLIED PHYSICS LETTERS, 2024, 124 (01)
  • [35] Phase-change VO2-based thermochromic smart windows
    Jiang, Cancheng
    He, Lanyue
    Xuan, Qingdong
    Liao, Yuan
    Dai, Jian-Guo
    Lei, Dangyuan
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [36] Tunable Hot Spot Based on the VO2 Phase Transition Materials
    Park, Jun-Bum
    Lee, Il-Min
    Lee, Seung-Yeol
    Lee, Byoungho
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2013,
  • [37] Terahertz Metamaterial Modulator Based on Phase Change Material VO2
    Dong, Yanfei
    Yu, Dingwang
    Li, Gaosheng
    Lin, Mingtuan
    Bian, Li-An
    SYMMETRY-BASEL, 2021, 13 (11):
  • [38] Semiconductor to metallic phase transitions in VO2/gold nanocomposite materials
    Lewis, KL
    Pitt, AM
    Bennett, RH
    ORGANIC PHOTOREFRACTIVES, PHOTORECEPTORS, AND NANOCOMPOSITES, 2000, 4104 : 34 - 41
  • [39] VO2 phase change electrodes in Li-ion batteries
    Castro-Pardo, Samuel
    Puthirath, Anand B.
    Fan, Shaoxun
    Saju, Sreehari
    Yang, Guang
    Nanda, Jagjit
    Vajtai, Robert
    Tang, Ming
    Ajayan, Pulickel M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (05) : 2738 - 2747
  • [40] Phonons of Phase-Change Materials
    Gaspard, Jean-Pierre
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (09):