Space-based hyperspectral imaging spectroradiometer for coastal studies

被引:1
|
作者
Puschell, Jeffery J. [1 ]
Silny, John [1 ]
Cook, Lacy [1 ]
Champion, Shaun [1 ]
Schiller, Stephen [1 ]
La Komski, David [1 ]
Nastal, Jamie [1 ]
Malone, Neil [2 ]
Davis, Curtiss [3 ]
机构
[1] Raytheon Space & Airborne Syst, 2000 E El Segundo Blvd,EO E01-C150, El Segundo, CA 90245 USA
[2] Raytheon Vision Syst, Goleta, CA 93117 USA
[3] Oregon State Univ, Corvallis, OR 97331 USA
关键词
coastal imaging; remote sensing; polar orbit; environmental satellite system; hyperspectral imaging;
D O I
10.1117/12.898472
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Resolving the complexity of coastal and estuarine waters requires high spatial resolution, hyperspectral imaging spectroradiometry. Hyperspectral measurements also provide capability for measuring bathymetry and bottom types in optically shallow water and for detailed cross calibration with other instruments in polar and geosynchronous orbit. This paper reports on recent design studies for a hyperspectral Coastal Imager (CI - pronounced "sea") that measures key data products from sun synchronous orbit. These products include water-leaving radiances in the near-ultraviolet, visible and near-infrared for separation of absorbing and scattering coastal water constituents and for calculation of chlorophyll fluorescence. In addition, CI measures spectral radiances in the near-infrared and shortwave infrared for atmospheric corrections while also measuring cloud radiances without saturation to enable more accurate removal of instrument stray light effects. CI provides contiguous spectral coverage from 380 to 2500 nm at 20 m GIFOV at nadir across 5000 + km(2) scenes with spectral sampling, radiometric sensitivity and calibration performance needed to meet the demanding requirements of coastal imaging. This paper describes the CI design, including concepts of operation for data collection, calibration (radiometric, spectral and spatial), onboard processing and data transmission to Earth. Performance characteristics for the instrument and all major subsystems including the optics, focal plane assemblies, onboard calibration, onboard processing and thermal subsystem are presented along with performance predictions for instrument sensitivity and calibration. Initial estimates of size, mass, power and data rate are presented.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Atmospheric characterization using space-based hyperspectral imaging systems
    Kacenjar, S
    Horwedel, M
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 4199 - 4202
  • [2] Space-based hyperspectral imaging and its role in the commercial world
    Ballinger, D
    [J]. 2001 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-7, 2001, : 915 - 923
  • [3] Space-Based Imaging Radar Studies of US Volcanoes
    Dzurisin, Daniel
    Lug, Zhong
    Poland, Michael P.
    Wicks, Charles W., Jr.
    [J]. FRONTIERS IN EARTH SCIENCE, 2019, 6
  • [4] Space-based hyperspectral technologies for the thermal infrared
    LeVan, Paul D.
    [J]. INFRARED TECHNOLOGY AND APPLICATIONS XXXVIII, PTS 1 AND 2, 2012, 8353
  • [5] Space-based hyperspectral technologies for the thermal infrared
    LeVan, Paul D.
    [J]. OPTICAL ENGINEERING, 2013, 52 (06)
  • [6] DATA PROCESSING FOR THE SPACE-BASED DESIS HYPERSPECTRAL SENSOR
    Carmona, E.
    Avbelj, J.
    Alonso, K.
    Bachmann, M.
    Cerra, D.
    Eckardt, A.
    Gerasch, B.
    Graham, L.
    Guenther, B.
    Heiden, U.
    Kerr, G.
    Knodt, U.
    Krutz, D.
    Krawcyk, H.
    Makarau, A.
    Miller, R.
    Mueller, R.
    Perkins, R.
    Walter, I.
    [J]. ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 271 - 277
  • [7] THE ASSESSMENT OF OPERATIONAL CAPABILITY OF THE SPACE-BASED HYPERSPECTRAL COMPLEX
    Zotov, Sergey A.
    Dmitriev, Y., V
    Shibanov, Sergey Y.
    Kondranin, Timofey, V
    Polyakov, Igor N.
    Zotova, Anastasia G.
    [J]. FIRST IAA/AAS SCITECH FORUM ON SPACE FLIGHT MECHANICS AND SPACE STRUCTURES AND MATERIALS, 2020, 170 : 561 - 572
  • [8] Hyperbolic Space-Based Autoencoder for Hyperspectral Anomaly Detection
    Sun, He
    Wang, Lizhi
    Zhang, Lei
    Gao, Lianru
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] Hyperion, a space-based imaging spectrometer
    Pearlman, JS
    Barry, PS
    Segal, CC
    Shepanski, J
    Beiso, D
    Carman, SL
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (06): : 1160 - 1173
  • [10] Maritime hyperspectral imaging and coastal bathymetry from space
    Corson, M. R.
    Bowles, J. H.
    Gillis, D. B.
    Maness, S. J.
    Montes, M. J.
    [J]. OCEANS 2005, VOLS 1-3, 2005, : 2269 - 2273