A-H-bimodules and equivalences

被引:5
|
作者
Menini, C
Seidel, A
Torrecillas, B
Wisbauer, R
机构
[1] Univ Ferrara, Dipartmento Matemat, I-44100 Ferrara, Italy
[2] Univ Dusseldorf, Dept Math, D-40225 Dusseldorf, Germany
[3] Univ Almeria, Dept Algebra & Anal, Almeria 04071, Spain
关键词
D O I
10.1081/AGB-100106776
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [6, Theorem 2.2] Doi gave a Hopf-algebraic proof of a generalization of Oberst's theorem on affine quotients of affine schemes. He considered a commutative Hopf algebra H over a field, coacting on a commutative H-comodule algebra A. If A(coH) denotes the subalgebra of coinvariant elements of A and beta : A circle timesA(coll) A --> A circle times H the canonical map, he proved that the following are equivalent: (a) A(coH) subset of A is a faithfully flat Hopf Galois extension; (b) the functor (-)(coH) : M-A(H) --> A(coH) -Mod is an equivalence; (c) A is coflat as a right H-comodule and beta is surjective. Schneider generalized this result in [14, Theorem 1] to the non-commutative situation imposing as a condition the bijectivity of the antipode of the underlying Hopf algebra. Interpreting the functor of coinvariants as a Hom-functor, Menini and Zuccoli gave in [10] a module-theoretic presentation of parts of the theory. Refining the techniques involved we are able to generalize Schneiders result to H-comodule-algebras A for a Hopf algebra H (with bijective antipode) over a commutative ring R under fairly weak assumptions.
引用
收藏
页码:4619 / 4640
页数:22
相关论文
共 50 条
  • [41] BIMODULES FOR COMPOSITION ALGEBRAS
    MCCRIMMON, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (02) : 480 - +
  • [42] A Note on Girard Bimodules
    Jan Paseka
    International Journal of Theoretical Physics, 2000, 39 : 805 - 812
  • [43] On bounded coordinates in bimodules
    De, Debabrata
    Mukherjee, Kunal
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (02)
  • [44] Crossed products in bimodules
    Yamagami, S
    MATHEMATISCHE ANNALEN, 1996, 305 (01) : 1 - 24
  • [45] Singular Soergel Bimodules
    Williamson, Geordie
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (20) : 4555 - 4632
  • [46] Trihedral Soergel bimodules
    Mackaay, Marco
    Mazorchuk, Volodymyr
    Miemietz, Vanessa
    Tubbenhauer, Daniel
    FUNDAMENTA MATHEMATICAE, 2020, 248 (03) : 219 - 300
  • [47] A theorem on extensions of bimodules
    D'Este, G
    ABELIAN GROUPS, MODULE THEORY, AND TOPOLOGY: PROCEEDINGS IN HONOUR OF ADALBERTO ORSATTI'S 60TH BIRTHDAY, 1998, 201 : 143 - 156
  • [48] A note on coarse bimodules
    Bannon, Jon
    Bikram, Panchugopal
    Mukherjee, Kunal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1404 - 1415
  • [49] Hilbert bimodules with involution
    Weaver, N
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (03): : 355 - 369
  • [50] NONASSOCIATIVE TOPOLOGICAL BIMODULES
    SLINKO, AM
    MATHEMATICS OF THE USSR-SBORNIK, 1987, 133 (1-2): : 259 - 270