High Yttria-Zirconia and Yttria Ceramics for Petrochemical Reverse-Flow Reactor Applications

被引:2
|
作者
Chun, ChangMin [1 ]
Desai, Sanket [1 ]
Hershkowitz, Frank [1 ]
Ramanarayanan, Trikur A. [2 ]
机构
[1] ExxonMobil Corp Strategic Res, Annandale, NJ 08801 USA
[2] Princeton Univ, Frick Chem Lab, Princeton, NJ 08544 USA
关键词
Corrosion - Ceramic materials - Pyrolysis - Yttria stabilized zirconia;
D O I
10.1111/ijac.12211
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reverse-flow reactors achieve the desired hydropyrolysis reaction of natural gas and other hydrocarbon feeds at very high temperatures of up to 2000 degrees C, which enables the production of many high-value chemicals. To identify refractory ceramic materials suitable for constructing key components of the reactor, the full range of solid solutions between zirconia and yttria having 18 to 100mol% yttria have been tested in a laboratory reactor. Conventional yttria-stabilized zirconia (YSZ) materials having 8mol% Y2O3 appear to accommodate reactor thermal severity, but are prone to a new form of corrosion termed ceramic dusting that is observed when pyrolysis and oxidation cycles are alternated under reverse-flow conditions. Yttria and high yttria-zirconia ceramics having similar to 80mol% or more yttria suppress ceramic dusting corrosion in steam-free pyrolysis environments. The addition of low levels of steam of similar to 5% to the pyrolysis gas stream increases the stability of YSZ materials substantially, so that the stability threshold is closer to 40mol% Y2O3 in the yttria-zirconia system. The two approaches can be combined to optimize reactor performance. Key experimental results are presented and discussed taking into account the thermodynamic phase stability of the different phases.
引用
收藏
页码:585 / 597
页数:13
相关论文
共 50 条
  • [31] Materials Challenges in Reverse-Flow Pyrolysis Reactors for Petrochemical Applications
    Chun, Chang Min
    Desai, Sanket
    Hershkowitz, Frank
    Keusenkothen, Paul F.
    Mohr, Gary D.
    Ramanarayanan, Trikur A.
    [J]. INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2014, 11 (01) : 106 - 117
  • [32] Diffusion of calcium in yttria stabilized zirconia ceramics
    Kowalski, K
    Bernasik, A
    Sadowski, A
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2000, 20 (12) : 2095 - 2100
  • [33] TRIBOLOGICAL CHARACTERISTICS OF ZIRCONIA-YTTRIA CERAMICS
    AMIN, KE
    NAG, D
    [J]. AMERICAN CERAMIC SOCIETY BULLETIN, 1995, 74 (05): : 80 - 84
  • [34] Microwave annealing of yttria stabilized zirconia ceramics
    Xu, LH
    Xie, ZP
    Li, JB
    Huang, Y
    Fan, XD
    Xu, HW
    [J]. JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (15) : 1249 - 1251
  • [35] THE PROCESSING AND ELECTRICAL-PROPERTIES OF PLASMA-SPRAYED YTTRIA-ZIRCONIA
    CURTIS, CL
    GAWNE, DT
    PRIESTNALL, M
    [J]. JOURNAL OF MATERIALS SCIENCE, 1994, 29 (12) : 3102 - 3106
  • [36] Preparation of ceria-zirconia and yttria-zirconia mixed oxides of unusual pore structures
    Morris, MA
    Reidy, HM
    [J]. CERAMICS INTERNATIONAL, 2005, 31 (07) : 929 - 935
  • [37] High toughness and strength in yttria-neodymia costabilized zirconia ceramics
    Kern, Frank
    [J]. SCRIPTA MATERIALIA, 2012, 67 (03) : 301 - 304
  • [38] Microstructure and oxidation resistance of spark plasma sintered Yttria-Zirconia ODS steels
    Rabbani, N. A.
    Basuki, E. A.
    Sudiro, T.
    Afandi, A.
    [J]. INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS, 2019, 541
  • [39] IONIC-CONDUCTIVITY OF MONOCLINIC AND TETRAGONAL YTTRIA-ZIRCONIA SINGLE-CRYSTALS
    BONANOS, N
    BUTLER, EP
    [J]. JOURNAL OF MATERIALS SCIENCE LETTERS, 1985, 4 (05) : 561 - 564