Characterization of the convolution operators on quasianalytic classes of Beurling type that admit a continuous linear right inverse

被引:2
|
作者
Bonet, Jose [1 ,2 ]
Meise, Reinhold [3 ]
机构
[1] Univ Politecn Valencia, IMPA UPV, E-46071 Valencia, Spain
[2] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
[3] Univ Dusseldorf, Inst Math, D-40225 Dusseldorf, Germany
关键词
quasianalytic classes of Beurling type; convolution operators; continuous linear right inverse; Fourier-Laplace transform; property (DN);
D O I
10.4064/sm184-1-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space epsilon((omega)) (R) of (omega)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (omega)-ultradifferential operators which admit a continuous linear right inverse on epsilon((omega)) [a, b] for each compact interval [a, b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on epsilon((omega)) (R).
引用
收藏
页码:49 / 77
页数:29
相关论文
共 50 条