CHARACTERIZATION OF THE LINEAR PARTIAL-DIFFERENTIAL OPERATORS WITH CONSTANT-COEFFICIENTS THAT ADMIT A CONTINUOUS LINEAR RIGHT INVERSE

被引:2
|
作者
MEISE, R
TAYLOR, BA
VOGT, D
机构
[1] UNIV DUSSELDORF,INST MATH,W-4000 DUSSELDORF 1,GERMANY
[2] UNIV CHICAGO,DEPT MATH,ANN ARBOR,MI 48109
[3] BERG UNIV GESAMTHSCH WUPPERTAL,GESAMTHSCH WUPPERTAL,FACHBEREICH MATH 7,W-5600 WUPPERTAL,GERMANY
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Solving a problem of L. Schwartz, those constant coefficient partial differential operators P(D) are characterized that admit a continuous linear right inverse on E(OMEGA) or D'(OMEGA), OMEGA an open set in R(n). For bounded-OMEGA with C1-boundary these properties are equivalent to P(D) being very hyperbolic. For OMEGA = R(n) they are equivalent to a Phragmen-Lindelof condition holding on the zero variety of the polynomial P.
引用
收藏
页码:619 / 655
页数:37
相关论文
共 50 条