Computations of a Bluff-Body Stabilised Premixed Flames Using ERN Method

被引:1
|
作者
Amzin, Shokri [1 ]
机构
[1] Western Norway Univ Appl Sci, Dept Mech & Marine Engn, Fac Sci & Engn, Inndalsveien 28, N-5063 Bergen, Norway
关键词
ERN; combustion; modelling; premixed flames; lean premixed; CONDITIONAL MOMENT CLOSURE; PREDICTING NOX EMISSIONS; COMBUSTION;
D O I
10.3390/chemengineering6040046
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Combustible carbon-based energy is still prevailing as the world's leading energy due to its high energy density. However, the oxidation of these hydrocarbons disturbs the natural carbon cycle greatly by increasing greenhouse gases. As emission legislation becomes more rigorous, lean premixed combustion becomes promising because it can reduce nitrogen oxides (NOx) and Carbon Monoxide (CO) emissions without compromising efficiency. However, utilising lean premixed flames in industrial combustors is not easy because of its thermo-acoustic instabilities associated with pressure fluctuations and the non-linearity in the mean reaction rate. Therefore, reliable predictive combustion models are required to predict emissions with sensible computational costs to use the mode efficiently in designing environmentally friendly combustion systems. Along with the promising methodologies capable of modelling turbulent premixed flames with low computational costs is the ERN-RANS framework. Thus, this study aims to compute a bluff-body stabilised premixed flames close to blow-Off using the ERN-RANS framework. As a result, a satisfactory agreement is reached between the predicted and measured values.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Large eddy simulation of bluff-body stabilized swirling non-premixed flames
    El-Asrag, H.
    Menon, S.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 1747 - 1754
  • [32] BLUFF-BODY FLAMES IN HOT AND DILUTED ENVIRONMENTS
    Liu, Chengyu
    Zhang, Jian
    Yang, Tao
    Ma, Yanhong
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2018, VOL 1, 2018,
  • [33] Blowoff characteristics of bluff-body stabilized conical premixed flames under upstream velocity modulation
    Chaparro, AA
    Cetegen, BM
    COMBUSTION AND FLAME, 2006, 144 (1-2) : 318 - 335
  • [34] Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients
    Chaudhuri, Swetaprovo
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2009, 156 (03) : 706 - 720
  • [35] Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustor
    Chaudhuri, Swetaprovo
    Kostka, Stanislav
    Tuttle, Steven G.
    Renfro, Michael W.
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2011, 158 (07) : 1358 - 1371
  • [36] Effects of free stream flow turbulence on blowoff characteristics of bluff-body stabilized premixed flames
    Chowdhury, Bikram R.
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2018, 190 : 302 - 316
  • [37] Prediction of Pollutant Emissions from Bluff-Body Stabilised Nonpremixed Flames (vol 2018, 8924370, 2018)
    Munteanu, Nelu
    Amzin, Shokri
    JOURNAL OF COMBUSTION, 2019, 2019
  • [38] Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach
    Lee, Chin Yik
    Cant, Stewart
    COMBUSTION THEORY AND MODELLING, 2017, 21 (04) : 722 - 748
  • [39] Spark ignition of turbulent nonpremixed bluff-body flames
    Ahmed, S. F.
    Balachandran, R.
    Marchione, T.
    Mastorakos, E.
    COMBUSTION AND FLAME, 2007, 151 (1-2) : 366 - 385
  • [40] Velocity fields of nonpremixed bluff-body stabilized flames
    Huang, RF
    Lin, CL
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2000, 122 (02): : 88 - 93