Independent Component Analysis (ICA) of Generalized Spike Wave Discharges in fMRI: Comparison with General Linear Model-Based EEG-fMRI

被引:39
|
作者
Moeller, Friederike [1 ]
Levan, Pierre [1 ]
Gotman, Jean [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst & Hosp, Montreal, PQ H3A 2B4, Canada
关键词
independent component analysis; general linear model; EEG-fMRI; epilepsy; BOLD HEMODYNAMIC-RESPONSES; EPILEPTIC SPIKES; FOCAL EPILEPSY; VARIABILITY; BRAIN; MRI; ACTIVATION; CHILDREN; TIME;
D O I
10.1002/hbm.21010
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Most EEG-fMRI studies in epileptic patients are analyzed using the general linear model (GLM), which assumes a known hemodynamic response function (HRF) to epileptic spikes. In contrast, independent component analysis (ICA) can extract blood-oxygenation level dependent (BOLD) responses without imposing constraints on the HRF. ICA might therefore detect responses that vary in time and shape, and that are not detected in the GLM analysis. In this study, we compared the findings of ICA and GLM analyses in 12 patients with idiopathic generalized epilepsy. Spatial ICA was used to extract independent components from the functional magnetic resonance imaging (fMRI) data. A deconvolution method identified component time courses significantly related to the generalized EEG discharges, without constraining the shape of the HRF. The results from the ICA analysis were compared to those from the GLM analysis. GLM maps and ICA maps showed significant correlation and revealed BOLD responses in the thalamus, caudate nucleus, and default mode areas. In patients with a low rate of discharges per minute, the GLM analysis detected BOLD signal changes within the thalamus and the caudate nucleus that were not revealed by the ICA. In conclusion, ICA is a viable alternative technique to GLM analyses in EEG-fMRI studies related to generalized discharges. This study demonstrated that the BOLD response largely resembles the standard HRF and that GLM analysis is adequate. However, ICA is more dependent on a sufficient number of events than GLM analysis. Hum Brain Mapp 32: 209-217, 2011. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:209 / 217
页数:9
相关论文
共 46 条
  • [11] Imaging haemodynamic changes related to seizures: Comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG
    Thornton, R. C.
    Rodionov, R.
    Laufs, H.
    Vulliemoz, S.
    Vaudano, A.
    Carmichael, D.
    Cannadathu, S.
    Guye, M.
    McEvoy, A.
    Lhatoo, S.
    Bartolomei, F.
    Chauvel, P.
    Diehl, B.
    De Martino, F.
    Elwes, R. D. C.
    Walker, M. C.
    Duncan, J. S.
    Lemieux, L.
    NEUROIMAGE, 2010, 53 (01) : 196 - 205
  • [12] Independent Component Analysis of EEG-fMRI data for studying epilepsy and epileptic seizures
    Franchin, Tiziana
    Tana, Maria G.
    Cannata, Vittorio
    Cerutti, Sergio
    Bianchi, Anna M.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 6011 - 6014
  • [13] EEG spike source localization before and after surgery for temporal lobe epilepsy: a BOLD EEG-fMRI and independent component analysis study
    Sercheli, M. S.
    Bilevicius, E.
    Alessio, A.
    Ozelo, H.
    Pereira, F. R. S.
    Rondina, J. M.
    Cendes, F.
    Covolan, R. J. M.
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2009, 42 (06) : 582 - 587
  • [14] Independent component analysis: a reliable alternative to general linear model for task-based fMRI
    Gkiatis, Kostakis
    Garganis, Kyriakos
    Karanasiou, Irene
    Chatzisotiriou, Athanasios
    Zountsas, Basilios
    Kondylidis, Nikolaos
    Matsopoulos, George K.
    FRONTIERS IN PSYCHIATRY, 2023, 14
  • [15] Parallel Independent Component Analysis using an Optimized Neurovascular Coupling for Concurrent EEG-fMRI Sources
    Wu, Lei
    Eichele, Tom
    Calhoun, Vince
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2542 - 2545
  • [16] Localisation of the irritative zone in epilepsy using simultaneous EEG/fMRI and independent component analysis (ICA)
    Jann, K.
    Hauf, M.
    Mathis, J.
    Meyer, K.
    Dierks, T.
    Koernig, T.
    Wiest, R.
    EPILEPSIA, 2007, 48 : 134 - 134
  • [17] APPLICATION OF INDEPENDENT COMPONENT ANALYSIS FOR THE DATA MINING OF SIMULTANEOUS EEG-fMRI: PRELIMINARY EXPERIENCE ON SLEEP ONSET
    Lee, Jong-Hwan
    Oh, Sungsuk
    Jolesz, Ferenc A.
    Park, Hyunwook
    Yoo, Seung-Schik
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2009, 119 (08) : 1118 - 1136
  • [18] Analysis of the Ballistocardiographic Artifact Removal in Simultaneous EEG-fMRI Recording Using Independent Component Analysis and Coherence Function
    Silva de Souza, Ana Claudia
    Rodrigues, Gustavo Fernandes
    Callan, Daniel
    Yehia, Hani Camille
    2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 552 - 556
  • [19] Analysis of EEG-fMRI data in focal epilepsy based on automated spike classification and Signal Space Projection
    Liston, Adam D.
    De Munck, Jan C.
    Hamandi, Khalid
    Laufs, Helmut
    Ossenblok, Pauly
    Duncan, John S.
    Lemieux, Louis
    NEUROIMAGE, 2006, 31 (03) : 1015 - 1024
  • [20] A reliable and time-saving semiautomatic spike-template-based analysis of interictal EEG-fMRI
    Tousseyn, Simon
    Dupont, Patrick
    Robben, David
    Goffin, Karolien
    Sunaert, Stefan
    Van Paesschen, Wim
    EPILEPSIA, 2014, 55 (12) : 2048 - 2058