High-temperature terahertz quantum cascade lasers

被引:30
|
作者
Wen, Boyu [1 ]
Ban, Dayan [1 ]
机构
[1] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Elect & Comp Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SCATTERING-ASSISTED INJECTION; INTERFACE ROUGHNESS SCATTERING; ELECTRON-TRANSPORT; PHONON-SCATTERING; ACTIVE REGIONS; THZ; SEMICONDUCTOR; POWER; GAAS; NONPARABOLICITY;
D O I
10.1016/j.pquantelec.2021.100363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The terahertz (THz) quantum cascade laser (QCL), first demonstrated in 2002, is among the most promising radiation sources in the THz region owing to its high output power and broad frequency coverage from similar to 1.3 to similar to 5.4 THz and sub-terahertz, without and with assistance of external strong magnetic field. The operation of THz QCLs, however, has thus far been limited to applications below room temperature. Recent advances in THz QCL research have principally focused on optimization of quantum design, fabrication, and growth techniques to improve the maximum operating temperature of THz QCLs; these efforts culminated in a recent demonstration of pulse-mode lasing at temperature up to 250 K. Research interests continue to be propelled as new maximum lasing temperature record are set, heating up the race to realize room-temperature operation of THz QCLs. This paper critically reviews key achievements and milestones of quantum designs, fabrication techniques, and simulation methods applicable to the high temperature operation of THz QCLs. In addition, this paper provides a succinct summary of efforts in this field to pinpoint the remaining challenges and provide a comprehensive picture for future trends in THz QCL research.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] High-Temperature Operation of 8.5 μm Distributed Feedback Quantum Cascade Lasers
    Li Yao-Yao
    Li Ai-Zhen
    Wei Lin
    Li Hua
    Xu Gang-Yi
    Zhang Yong-Gang
    CHINESE PHYSICS LETTERS, 2009, 26 (08)
  • [32] High-temperature operation of 8.5 μm distributed feedback quantum cascade lasers
    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
    Chin. Phys. Lett., 2009, 8
  • [33] Nanowire terahertz quantum cascade lasers
    Grange, Thomas
    APPLIED PHYSICS LETTERS, 2014, 105 (14)
  • [34] Terahertz Metasurface Quantum Cascade Lasers
    Xu, Luyao
    Curwen, Christopher
    Reno, John
    Itoh, Tatsuo
    Williams, Benjamin S.
    2016 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2016,
  • [35] High order sideband generation in terahertz quantum cascade lasers
    Cavalie, P.
    Freeman, J.
    Maussang, K.
    Strupiechonski, E.
    Xu, G.
    Colombelli, R.
    Li, L.
    Davies, A. G.
    Linfield, E. H.
    Tignon, J.
    Dhillon, S. S.
    APPLIED PHYSICS LETTERS, 2013, 102 (22)
  • [36] Terahertz Imaging with Quantum Cascade Lasers
    Lee, Alan W.
    Kao, Tsung-Yu
    Zimmerman, Ian A.
    Oda, Naoki
    Hu, Qing
    IMAGE SENSING TECHNOLOGIES: MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS III, 2016, 9854
  • [37] Terahertz quantum-cascade lasers
    Williams, Benjamin S.
    NATURE PHOTONICS, 2007, 1 (09) : 517 - 525
  • [38] Invited - Terahertz quantum cascade lasers
    Davies, G
    Linfield, E
    2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, : 743 - 746
  • [39] Analysis of High-Performing Terahertz Quantum Cascade Lasers
    Rindert, Viktor
    Onder, Ekin
    Wacker, Andreas
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [40] Terahertz quantum cascade lasers - Discussion
    Hu, Q
    Faist, J
    Smith, G
    Murdin, B
    Phillips, C
    Barbieri, S
    Unterrainer, K
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1815): : 229 - 231