NECESSARY AND SUFFICIENT CONDITIONS FOR UNIT GRAPHS TO BE HAMILTONIAN

被引:34
|
作者
Maimani, H. R. [1 ,2 ]
Pournaki, M. R. [3 ]
Yassemi, S. [2 ,4 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Math Sect, Dept Basic Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[3] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[4] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
关键词
Hamiltonian cycle; Hamiltonian graph; finite ring; RINGS;
D O I
10.2140/pjm.2011.249.419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The unit graph corresponding to an associative ring R is the graph obtained by setting all the elements of R to be the vertices and defining distinct vertices x and y to be adjacent if and only if x + y is a unit of R. By a constructive method, we derive necessary and sufficient conditions for unit graphs to be Hamiltonian.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 50 条