Magnetic correlations in the two-dimensional repulsive Fermi-Hubbard model

被引:12
|
作者
Simkovic, Fedor [1 ]
Deng, Youjin [2 ,3 ]
Prokof'ev, N. V. [4 ,5 ]
Svistunov, B. V. [4 ,5 ]
Tupitsyn, I. S. [4 ,5 ]
Kozik, Evgeny [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[5] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
MOTT INSULATOR; GROUND-STATE; ANTIFERROMAGNETISM; FERROMAGNETISM; INSTABILITIES; TEMPERATURE; NARROW; PHASES; ATOMS;
D O I
10.1103/PhysRevB.96.081117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The repulsive Fermi-Hubbard model on a square lattice has a rich phase diagram near half-filling (n = 1): at n = 1 the ground state is an antiferromagnetic insulator, at 0.6 < n less than or similar to 0.8 the ground state is a d(x2-y2)-wave superfluid (at least for moderately strong interactions, U less than or similar to 4), and the region 1 - n << 1 is likely subject to phase separation. Much less is known about the nature of strong magnetic fluctuations at finite temperature and how they change with the doping level. Recent experiments on ultracold atoms have now reached this interesting fluctuation regime. In this work we employ the skeleton diagrammatic method to quantify the characteristic temperature scale T-M (n) for the onset of magnetic fluctuations with a large correlation length.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Stripe correlations in the two-dimensional Hubbard-Holstein model
    Karakuzu, Seher
    Ly, Andy Tanjaroon
    Mai, Peizhi
    Neuhaus, James
    Maier, Thomas A.
    Johnston, Steven
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [42] Stripe correlations in the two-dimensional Hubbard-Holstein model
    Seher Karakuzu
    Andy Tanjaroon Ly
    Peizhi Mai
    James Neuhaus
    Thomas A. Maier
    Steven Johnston
    Communications Physics, 5
  • [43] Temporal decay of Neel order in the one-dimensional Fermi-Hubbard model
    Bauer, A.
    Dorfner, F.
    Heidrich-Meisner, F.
    PHYSICAL REVIEW A, 2015, 91 (05):
  • [44] Exact solutions of the high dimensional hard-core Fermi-Hubbard model
    Pan, F
    Dai, LR
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2001, 44 (01): : 83 - 88
  • [45] Exact solutions of the high dimensional hard-core Fermi-Hubbard model
    Feng Pan
    Lianrong Dai
    Science in China Series A: Mathematics, 2001, 44 : 83 - 88
  • [46] ATTRACTIVE AND REPULSIVE PAIRING INTERACTION VERTICES FOR THE TWO-DIMENSIONAL HUBBARD-MODEL
    WHITE, SR
    SCALAPINO, DJ
    SUGAR, RL
    BICKERS, NE
    SCALETTAR, RT
    PHYSICAL REVIEW B, 1989, 39 (01): : 839 - 842
  • [47] Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model
    Cheuk, Lawrence W.
    Nichols, Matthew A.
    Lawrence, Katherine R.
    Okan, Melih
    Zhang, Hao
    Khatami, Ehsan
    Trivedi, Nandini
    Paiva, Thereza
    Rigol, Marcos
    Zwierlein, Martin W.
    SCIENCE, 2016, 353 (6305) : 1260 - 1264
  • [48] Exact solutions of the high dimensional hard-core Fermi-Hubbard model
    Pan, F.
    Dai, L.
    Science in China, Series A: Mathematics, Physics, Astronomy, 2001, 44 (01): : 83 - 88
  • [49] Slater determinant and exact eigenstates of the two-dimensional Fermi–Hubbard model
    任军航
    叶明勇
    林秀敏
    Chinese Physics B, 2018, 27 (07) : 269 - 272
  • [50] Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model
    Wu, Wei
    Scheurer, Mathias S.
    Chatterjee, Shubhayu
    Sachdev, Subir
    Georges, Antoine
    Ferrero, Michel
    PHYSICAL REVIEW X, 2018, 8 (02):