EXISTENCE OF C1,1 CRITICAL SUBSOLUTIONS IN DISCRETE WEAK KAM THEORY

被引:3
|
作者
Zavidovique, Maxime [1 ]
机构
[1] Ecole Normale Super Lyon, Unite Math Pures & Appl, CNRS, UMR 5669, F-69364 Lyon 07, France
关键词
Discrete weak KAM theory; critical subsolutions; Ilmanen's lemma; Aubry Mather theory; twist maps; Hamiltonian and Lagrangian dynamics; TRANSPORTATION;
D O I
10.3934/jmd.2010.4.693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, following [29], we study critical subsolutions in discrete weak KAM theory. In particular, we establish that if the cost function c : M x M -> R defined on a smooth connected manifold is locally semiconcave and satisfies twist conditions, then there exists a C-1,C-1 critical subsolution strict on a maximal set (namely, outside of the Aubry set). We also explain how this applies to costs coming from Tonelli Lagrangians. Finally, following ideas introduced in [18] and [26], we study invariant cost functions and apply this study to certain covering spaces, introducing a discrete analog of Mather's alpha function on the cohomology.
引用
收藏
页码:693 / 714
页数:22
相关论文
共 50 条
  • [21] Spectral cluster estimates for C1,1, metrics
    Smith, Hart F.
    AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (05) : 1069 - 1103
  • [23] Computing minimal interpolants in C1,1(Rd)
    Herbert-Voss, Ariel
    Hirn, Matthew J.
    McCollum, Frederick
    REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) : 29 - 66
  • [24] A regularisation approach to causality theory for C1,1-Lorentzian metrics
    Kunzinger, Michael
    Steinbauer, Roland
    Stojkovic, Milena
    Vickers, James A.
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (08) : 1 - 18
  • [25] WEAK TYPE (1,1) INEQUALITIES FOR DISCRETE ROUGH MAXIMAL FUNCTIONS
    Mirek, Mariusz
    JOURNAL D ANALYSE MATHEMATIQUE, 2015, 127 : 247 - 281
  • [26] Prescribing Tangent Hyperplanes to C1,1 and C1,ω Convex Hypersurfaces in Hilbert and Superreflexive Banach Spaces
    Azagra, Daniel
    Mudarra, Carlos
    JOURNAL OF CONVEX ANALYSIS, 2020, 27 (01) : 79 - 102
  • [27] Locally C1,1 convex extensions of 1-jets
    Azagra, Daniel
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (01) : 131 - 174
  • [28] On the existence of C1 functions with perfect level sets
    D'Aniello, E
    Darji, UB
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (03): : 847 - 852
  • [29] Ilmanen's Lemma on Insertion of C1,1 Functions
    Fathi, A.
    Zavidovique, M.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 124 : 203 - 219
  • [30] C1 WEAK PALIS CONJECTURE FOR NONSINGULAR FLOWS
    Xiao, Qianying
    Zheng, Zuohuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (04) : 1809 - 1832