Chaos, ergodic convergence, and fractal instability for a thermostated canonical harmonic oscillator

被引:0
|
作者
Hoover, WG [1 ]
Hoover, CG
Isbister, DJ
机构
[1] Univ Calif Davis, Dept Appl Sci, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab, Dept Mech Engn, Methods Dev Grp, Livermore, CA 94550 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 02期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The authors thermostat a qp harmonic oscillator using the two additional control variables zeta and xi to simulate Gibbs' canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermostated oscillator motion is completely ergodic, covering the full four-dimensional {q, p, zeta, xi} phase space. The local Lyapunov spectrum (instantaneous growth rates of a comoving corotating phase-space hypersphere) exhibits singularities like those found earlier for Hamiltonian chaos, reinforcing the notion that chaos requires kinetic-as opposed to statistical-study, both at and away from equilibrium. The exponent singularities appear to have a fractal character.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Quantum instability and Ehrenfest time for an inverted harmonic oscillator
    Shangyun Wang
    Songbai Chen
    Jiliang Jing
    Communications in Theoretical Physics, 2025, 77 (01) : 37 - 42
  • [42] The multi-faceted inverted harmonic oscillator: Chaos and complexity
    Bhattacharyya, Arpan
    Chemissany, Wissam
    Haque, S. Shajidul
    Murugan, Jeff
    Yan, Bin
    SCIPOST PHYSICS CORE, 2021, 4 (01):
  • [43] ALMOST SURE INSTABILITY OF THE RANDOM HARMONIC-OSCILLATOR
    FENG, XB
    LOPARO, KA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (03) : 744 - 759
  • [44] Quantum instability and Ehrenfest time for an inverted harmonic oscillator
    Wang, Shangyun
    Chen, Songbai
    Jing, Jiliang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (01)
  • [45] Predicting chaos in memristive oscillator via harmonic balance method
    Wang, Xin
    Li, Chuandong
    Huang, Tingwen
    Duan, Shukai
    CHAOS, 2012, 22 (04)
  • [46] Diffusion-induced instability and chaos in random oscillator networks
    Nakao, Hiroya
    Mikhailov, Alexander S.
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [47] PROJECTION OPERATOR APPROACH TO ERGODIC PROPERTIES OF A HARMONIC OSCILLATOR CHAIN CONTAINING AN IMPURITY
    WILSON, RS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (03): : 452 - 452
  • [48] CANONICAL-TRANSFORMATIONS AND PHASE TRAJECTORIES OF THE DAMPED HARMONIC-OSCILLATOR
    NAGEM, R
    SANDRI, GVH
    JOURNAL OF SOUND AND VIBRATION, 1994, 169 (02) : 270 - 275
  • [49] Convergence and adiabatic elimination for a driven dissipative quantum harmonic oscillator
    Azouit, R.
    Sarlette, A.
    Rouchon, P.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6447 - 6453
  • [50] The convergence in L1 of singular integrals in harmonic analysis and ergodic theory
    Lorente, M
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (06) : 617 - 638