Chaos, ergodic convergence, and fractal instability for a thermostated canonical harmonic oscillator

被引:0
|
作者
Hoover, WG [1 ]
Hoover, CG
Isbister, DJ
机构
[1] Univ Calif Davis, Dept Appl Sci, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab, Dept Mech Engn, Methods Dev Grp, Livermore, CA 94550 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 02期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The authors thermostat a qp harmonic oscillator using the two additional control variables zeta and xi to simulate Gibbs' canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermostated oscillator motion is completely ergodic, covering the full four-dimensional {q, p, zeta, xi} phase space. The local Lyapunov spectrum (instantaneous growth rates of a comoving corotating phase-space hypersphere) exhibits singularities like those found earlier for Hamiltonian chaos, reinforcing the notion that chaos requires kinetic-as opposed to statistical-study, both at and away from equilibrium. The exponent singularities appear to have a fractal character.
引用
收藏
页数:5
相关论文
共 50 条