Double Side Interfacial Optimization for Low-Temperature Stable CsPbI2Br Perovskite Solar Cells with High Efficiency Beyond 16%

被引:35
|
作者
Ma, Jing [1 ]
Su, Jie [1 ]
Lin, Zhenhua [1 ]
He, Jian [1 ]
Zhou, Long [1 ]
Li, Tao [3 ]
Zhang, Jincheng [1 ,2 ]
Liu, Shengzhong [4 ]
Chang, Jingjing [1 ,2 ]
Hao, Yue [1 ]
机构
[1] Xidian Univ, State Key Discipline Lab Wide Band Gap Semicond T, Shaanxi Joint Key Lab Graphene, Sch Microelect, Xian 710071, Peoples R China
[2] Xidian Univ, Adv Interdisciplinary Res Ctr Flexible Elect, Xian 710071, Peoples R China
[3] Xi An Jiao Tong Univ, Ctr Spintron & Quantum Syst, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[4] Shaanxi Normal Univ, Key Lab Appl Surface & Colloid Chem, Natl Minist Educ Shaanxi Engn Lab Adv Energy Tech, Sch Mat Sci & Engn, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
CsPbI2Br; dual interfacial optimization; high performance; low temperature; perovskite solar cells; TOTAL-ENERGY CALCULATIONS; PASSIVATION; GUANIDINIUM;
D O I
10.1002/eem2.12212
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CsPbI2Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability. However, open-circuit voltage (V-oc) loss caused by band mismatch and charge recombination between perovskite and charge transporting layer is one of the crucial obstacles to further improve the device performance. Here, we proposed a bilayer electron transport layer ZnO(bottom)/SnO2(top) to reduce the V-oc loss (E-loss) and promote device V-oc by ZnO insert layer thickness modulation, which could improve the efficiency of charge carrier extraction/transfer and suppress the charge carrier recombination. In addition, guanidinium iodide top surface treatment is used to further reduce the trap density, stabilize the perovskite film and align the energy levels, which promotes the fill factor, short-circuit current density (J(sc)), and stability of the device. As a result, the champion cell of double-side optimized CsPbI2Br perovskite solar cells exhibits an extraordinary efficiency of 16.25% with the best V-oc as high as 1.27 V and excellent thermal and storage stability.
引用
收藏
页码:637 / 644
页数:8
相关论文
共 50 条
  • [21] Boosting the performance of low-temperature processed CsPbI2Br planar perovskite solar cells by interface engineering
    Zhang, Xiang
    Yang, Jiajun
    Xie, Lai
    Lu, Xubing
    Gao, Xingsen
    Gao, Jinwei
    Shui, Lingling
    Wu, Sujuan
    Liu, Jun-Ming
    DYES AND PIGMENTS, 2021, 186
  • [22] A Key 2D Intermediate Phase for Stable High-Efficiency CsPbI2Br Perovskite Solar Cells
    Yang, Shaomin
    Wen, Jialun
    Liu, Zhike
    Che, Yuhang
    Xu, Jie
    Wang, Jungang
    Xu, Dongfang
    Yuan, Ningyi
    Ding, Jianning
    Duan, Yuwei
    Liu, Shengzhong
    ADVANCED ENERGY MATERIALS, 2022, 12 (02)
  • [23] Targeting the imperfections at the ZnO/CsPbI2Br interface for low-temperature carbon-based perovskite solar cells
    Zhang, Xiang
    Zhang, Dan
    Guo, Tonghui
    Zou, Junjie
    Jin, Junjun
    Zheng, Chunqiu
    Zhou, Yuan
    Zhu, Zhenkun
    Hu, Zhao
    Cao, Qiang
    Wu, Sujuan
    Zhang, Jing
    Tai, Qidong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (17) : 9616 - 9625
  • [24] A silazane additive for CsPbI2Br perovskite solar cells
    Cao, Ruiqi
    Yue, Yaochang
    Zhang, Hong
    Cheng, Qian
    Wang, Boxin
    Li, Shilin
    Zhang, Yuan
    Li, Shuhong
    Zhou, Huiqiong
    CHINESE PHYSICS B, 2022, 31 (11)
  • [25] Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%
    Ozturk, Teoman
    Akman, Erdi
    Shalan, Ahmed Esmail
    Akin, Seckin
    NANO ENERGY, 2021, 87
  • [26] Zirconium Doping to Enable High-Efficiency and Stable CsPbI2Br All-Inorganic Perovskite Solar Cells
    Ma, Peiyu
    Bie, Tong
    Liu, Yufei
    Yang, Lvpeng
    Bi, Sheng
    Wang, Zhi
    Shao, Ming
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (01) : 1217 - 1224
  • [27] A silazane additive for CsPbI2Br perovskite solar cells
    曹瑞琪
    乐耀昌
    张弘
    程倩
    王博欣
    李世麟
    张渊
    李书宏
    周惠琼
    Chinese Physics B, 2022, 31 (11) : 70 - 75
  • [28] All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13%
    Liu, Chong
    Li, Wenzhe
    Zhang, Cuiling
    Ma, Yunping
    Fan, Jiandong
    Mai, Yaohua
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (11) : 3825 - 3828
  • [29] A Facile Low Temperature Fabrication of High Performance CsPbI2Br All-Inorganic Perovskite Solar Cells
    Wang, Yong
    Zhang, Taiyang
    Xu, Feng
    Li, Yihui
    Zhao, Yixin
    SOLAR RRL, 2018, 2 (01):
  • [30] Fluorinated organic ammonium salt passivation for high-efficiency and stable inverted CsPbI2Br perovskite solar cells
    Liu, Xin
    She, Xingchen
    Wang, Lang
    Li, Wei
    Zhang, Wen
    Wang, Shu
    Wangyang, Peihua
    Wang, Zhijun
    Li, Jie
    Cui, Xumei
    Lan, Mu
    Liu, Liqin
    Sun, Hui
    Zhang, Jun
    Yang, Dingyu
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (09):