Entanglement Entropy and Entanglement Spectrum of the Kitaev Model

被引:186
|
作者
Yao, Hong [1 ,2 ]
Qi, Xiao-Liang [3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA
[4] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
QUANTUM COMPUTATION; ANYONS; SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevLett.105.080501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = S-G + S-F, with S-F the entanglement entropy of a free Majorana fermion system and SG that of a Z(2) gauge field. The Z(2) gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z(2) vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states-the capacity of entanglement, which can distinguish the states with and without topologically protected gapless entanglement spectrum.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Entanglement entropy and negativity in the Ising model with defects
    David Rogerson
    Frank Pollmann
    Ananda Roy
    Journal of High Energy Physics, 2022
  • [42] Dynamics of entanglement entropy and entanglement spectrum crossing a quantum phase transition (vol 89, 104303, 2014)
    Canovi, Elena
    Ercolessi, Elisa
    Naldesi, Piero
    Taddia, Luca
    Vodola, Davide
    PHYSICAL REVIEW B, 2015, 91 (13):
  • [43] Entanglement entropy from entanglement contour: Higher dimensions
    Han, Muxin
    Wen, Qiang
    SCIPOST PHYSICS CORE, 2022, 5 (02):
  • [44] Holographic Entanglement Entropy
    Danehkar, Ashkbiz
    FRONTIERS IN PHYSICS, 2019, 7
  • [45] Comments on entanglement entropy
    Mukohyama, S
    PHYSICAL REVIEW D, 1998, 58 (10)
  • [46] Entanglement entropy on fractals
    Astaneh, Amin Faraji
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [47] Signatures of magnetic-field-driven quantum phase transitions in the entanglement entropy and spin dynamics of the Kitaev honeycomb model
    Ronquillo, David C.
    Vengal, Adu
    Trivedi, Nandini
    PHYSICAL REVIEW B, 2019, 99 (14)
  • [48] Topological entanglement entropy
    Kitaev, A
    Preskill, J
    PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [49] Anomalies and entanglement entropy
    Nishioka, Tatsuma
    Yarom, Amos
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [50] Entanglement entropy of a superflow
    Khlebnikov, Sergei
    Sheoran, Akhil
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)