Entanglement Entropy and Entanglement Spectrum of the Kitaev Model

被引:186
|
作者
Yao, Hong [1 ,2 ]
Qi, Xiao-Liang [3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA
[4] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
QUANTUM COMPUTATION; ANYONS; SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevLett.105.080501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = S-G + S-F, with S-F the entanglement entropy of a free Majorana fermion system and SG that of a Z(2) gauge field. The Z(2) gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z(2) vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states-the capacity of entanglement, which can distinguish the states with and without topologically protected gapless entanglement spectrum.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Ground state entanglement and geometric entropy in the Kitaev model
    Hamma, A
    Ionicioiu, R
    Zanardi, P
    PHYSICS LETTERS A, 2005, 337 (1-2) : 22 - 28
  • [2] Topological entanglement entropy of the three-dimensional Kitaev model
    Randeep, N. C.
    Surendrad, Naveen
    PHYSICAL REVIEW B, 2018, 98 (12)
  • [3] Entanglement entropy and entanglement spectrum of triplet topological superconductors
    Oliveira, T. P.
    Ribeiro, P.
    Sacramento, P. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (42)
  • [4] Entanglement entropy in the long-range Kitaev chain
    Ares, Filiberto
    Esteve, Jose G.
    Falceto, Fernando
    de Queiroz, Amilcar R.
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [5] Entanglement and Majorana edge states in the Kitaev model
    Mandal, Saptarshi
    Maiti, Moitri
    Varma, Vipin Kerala
    PHYSICAL REVIEW B, 2016, 94 (04)
  • [6] Dynamics of entanglement entropy and entanglement spectrum crossing a quantum phase transition
    Canovi, Elena
    Ercolessi, Elisa
    Naldesi, Piero
    Taddia, Luca
    Vodola, Davide
    PHYSICAL REVIEW B, 2014, 89 (10)
  • [7] Entanglement entropy in multi-leg Kitaev ladders with interface defects
    Almeida, Dalson Eloy
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (10):
  • [8] Entanglement entropy and its quench dynamics for pure states of the Sachdev-Ye-Kitaev model
    Zhang, Pengfei
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
  • [9] Eigenstate entanglement in the Sachdev-Ye-Kitaev model
    Huang, Yichen
    Gu, Yingfei
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [10] Gauge field entanglement in Kitaev's honeycomb model
    Dora, Balazs
    Moessner, Roderich
    PHYSICAL REVIEW B, 2018, 97 (03)