Towards artificial photosynthesis:: ruthenium-manganese chemistry for energy production

被引:519
|
作者
Sun, LC [1 ]
Hammarström, L
Åkermark, B
Styring, S
机构
[1] Stockholm Univ, Dept Organ Chem, Arrhenius Lab, S-10691 Stockholm, Sweden
[2] Uppsala Univ, Dept Phys Chem, S-75121 Uppsala, Sweden
[3] Lund Univ, Ctr Chem & Chem Engn, Dept Biochem, S-22100 Lund, Sweden
关键词
D O I
10.1039/a801490f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis and characterisation of supramolecular model systems mimicking the light reactions on the donor side of Photosystem II (PSII) in green plants have been reviewed. In these systems, manganese complexes and tyrosine are electron donors, modelling the manganese cluster and tyrosine(Z) in PSII. The donors have been covalently linked to a photosensitizer, a ruthenium(ii) tris-bipyridyl complex, that plays the role of the P-680 chlorophylls in PSII. It has been demonstrated that, in the presence of an external electron acceptor in solution, the model systems can undergo an intermolecular electron transfer from the photoexcited state of Ru-II to an acceptor, followed by an intramolecular electron transfer from the coordinated Mn complexes or the tyrosine unit to the photogenerated Ru-III. This leads to regeneration of the Ru-II and oxidation of the Mn complexes or generation of a tyrosine radical. The process closely mimics the primary reaction steps on the donor side of PSII.
引用
收藏
页码:36 / 49
页数:14
相关论文
共 50 条
  • [31] Colloidal Chemistry to Advance Studies in Artificial Photosynthesis
    Buonsanti, Raffaella
    CHIMIA, 2016, 70 (11) : 780 - 786
  • [32] Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies
    K. Nath
    M. M. Najafpour
    R. A. Voloshin
    S. E. Balaghi
    E. Tyystjärvi
    R. Timilsina
    J. J. Eaton-Rye
    T. Tomo
    H. G. Nam
    H. Nishihara
    S. Ramakrishna
    J.-R. Shen
    S. I. Allakhverdiev
    Photosynthesis Research, 2015, 126 : 237 - 247
  • [33] Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies
    Nath, K.
    Najafpour, M. M.
    Voloshin, R. A.
    Balaghi, S. E.
    Tyystjarvi, E.
    Timilsina, R.
    Eaton-Rye, J. J.
    Tomo, T.
    Nam, H. G.
    Nishihara, H.
    Ramakrishna, S.
    Shen, J. -R.
    Allakhverdiev, S. I.
    PHOTOSYNTHESIS RESEARCH, 2015, 126 (2-3) : 237 - 247
  • [35] Solar Fuels Production by Artificial Photosynthesis
    Ager, Joel W.
    Lee, Min-Hyung
    Javey, Ali
    SOLAR CHEMICAL ENERGY STORAGE (SOLCHES), 2013, 1568 : 3 - 6
  • [36] HYDROGEN PRODUCTION Catalysing artificial photosynthesis
    Mao, Samuel S.
    Shen, Shaohua
    NATURE PHOTONICS, 2013, 7 (12) : 944 - 946
  • [37] Inorganic Ruthenium Catalyst for Photoinduced Oxidation of Water in Artificial Photosynthesis
    V. Yu. Il’yashchenko
    Z. M. Dzhabieva
    T. A. Savinykh
    L. V. Avdeeva
    T. S. Dzhabiev
    High Energy Chemistry, 2022, 56 : 38 - 41
  • [38] Inorganic Ruthenium Catalyst for Photoinduced Oxidation of Water in Artificial Photosynthesis
    Il'yashchenko, V. Yu.
    Dzhabieva, Z. M.
    Savinykh, T. A.
    Avdeeva, L. V.
    Dzhabiev, T. S.
    HIGH ENERGY CHEMISTRY, 2022, 56 (01) : 38 - 41
  • [40] Artificial photosynthesis for solar energy conversion
    Wu, Li-Zhu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252