Fault diagnosis studies of face milling cutter using machine learning approach

被引:26
|
作者
Madhusudana, C. K. [1 ]
Budati, S. [1 ]
Gangadhar, N. [1 ]
Kumar, H. [1 ]
Narendranath, S. [1 ]
机构
[1] Natl Inst Technol Karnataka, Mangalore 575025, India
关键词
Condition monitoring; machine learning; decision tree; Naive Bayes; SUPPORT VECTOR MACHINE; DECISION TREE; TOOL WEAR; OPERATIONS; ALGORITHM; SELECTION; SIGNALS; SYSTEM;
D O I
10.1177/0263092316644090
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Successful automation of a machining process system requires an effective and efficient tool condition monitoring system to ensure high productivity, products of desired dimensions, and long machine tool life. As such the component's processing quality and increased system reliability will be guaranteed. This paper presents a classification of healthy and faulty conditions of the face milling tool by using the Naive Bayes technique. A set of descriptive statistical parameters is extracted from the vibration signals. The decision tree technique is used to select significant features out of all statistical extracted features. The selected features are fed to the Naive Bayes algorithm. The output of the algorithm is used to study and classify the milling tool condition and it is found that the Naive Bayes model is able to give 96.9% classification accuracy. Also the performances of the different classifiers are compared. Based on the results obtained, the Naive Bayes technique can be recommended for online monitoring and fault diagnosis of the face milling tool.
引用
收藏
页码:128 / 138
页数:11
相关论文
共 50 条
  • [41] Grid application fault diagnosis using wrapper services and machine learning
    Hofer, Juergen
    Fahringer, Thomas
    SERVICE-ORIENTED COMPUTING - ICSOC 2007, PROCEEDINGS, 2007, 4749 : 233 - +
  • [42] Fault detection and diagnosis in refrigeration systems using machine learning algorithms
    Soltani, Zahra
    Sorensen, Kresten Kjaer
    Leth, John
    Bendtsen, Jan Dimon
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2022, 144 : 34 - 45
  • [43] Grid application fault diagnosis using wrapper services and machine learning
    Hofer, Juergen
    Fahringer, Thomas
    INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 2008, 17 (03) : 283 - 299
  • [44] Fault diagnosis technique in internal combustion engines using machine learning
    Marinho, Edilson
    Pinto, Antonio
    Formiga, Cleiton
    Pantaleon-Matamoros, Efrain
    Figueroa Hernandez, Carlos
    O'Farrill-Enrique, Sandra
    Seabra, Eurico
    REVISTA CUBANA DE INGENIERIA, 2020, 11 (01): : 14 - 30
  • [45] Gearbox Fault Diagnosis Using REMD, EO and Machine Learning Classifiers
    Adel Afia
    Fawzi Gougam
    Chemseddine Rahmoune
    Walid Touzout
    Hand Ouelmokhtar
    Djamel Benazzouz
    Journal of Vibration Engineering & Technologies, 2024, 12 : 4673 - 4697
  • [46] Brake fault diagnosis using a voting ensemble of machine learning classifiers
    Viswanathan, Sivagurunathan
    Sridharan, Naveen Venkatesh
    Rakkiyannan, Jegadeeshwaran
    Vaithiyanathan, Sugumaran
    RESULTS IN ENGINEERING, 2024, 23
  • [47] AN ANALYSIS OF AIR COMPRESSOR FAULT DIAGNOSIS USING MACHINE LEARNING TECHNIQUE
    Mohan, Prakash
    Sundaram, Manikandan
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (06): : 13 - 27
  • [48] Fault diagnosis of biological systems using improved machine learning technique
    Radhia Fezai
    Kamaleldin Abodayeh
    Majdi Mansouri
    Hazem Nounou
    Mohamed Nounou
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 515 - 528
  • [49] Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
    Shao, Siyu
    McAleer, Stephen
    Yan, Ruqiang
    Baldi, Pierre
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) : 2446 - 2455
  • [50] Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine
    Yang, Xinyi
    Pang, Shan
    Shen, Wei
    Lin, Xuesen
    Jiang, Keyi
    Wang, Yonghua
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2016, 2016