Bounds for pairs in partitions of graphs

被引:7
|
作者
Ma, Jie [1 ]
Yu, Xingxing [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Graph partition; Judicious partition; Azuma-Hoeffding inequality; JUDICIOUS PARTITIONS; HYPERGRAPHS;
D O I
10.1016/j.disc.2010.03.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the following problem of Bollobas and Scott: What is the smallest f(k, m) such that for any integer k >= 2 and any graph G with m edges, there is a partition V(G) = boolean OR(k)(i=1) V-i such that for 1 <= i not equal j <= k, e(V-i boolean OR V-j) <= f(k, m)? We show that f(k, m) < 1.6m/k + o(m), and f(k, m) < 1.5m/k + o(m) for k >= 23. (While the graph K-1,K- n shows that f(k, m) >= m/(k - 1), which is 1.5m/k when k = 3.) We also show that f(4, m) <= m/3 + o(m) and f(5, m) <= 4m/15 + o(m), providing evidence to a conjecture of Bollobas and Scott. For dense graphs, we improve the bound to 4m/k(2) + o(m), which, for large graphs, answers in the affirmative a related question of Bollobas and Scott. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2069 / 2081
页数:13
相关论文
共 50 条
  • [31] Domatic partitions of computable graphs
    Jura, Matthew
    Levin, Oscar
    Markkanen, Tyler
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2014, 53 (1-2) : 137 - 155
  • [32] STAR PARTITIONS AND REGULARITY IN GRAPHS
    ROWLINSON, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 247 - 265
  • [33] Graphs, partitions and classes of groups
    Adolfo Ballester-Bolinches
    John Cossey
    [J]. Monatshefte für Mathematik, 2012, 166 : 309 - 318
  • [34] Graphs, partitions and classes of groups
    Ballester-Bolinches, Adolfo
    Cossey, John
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 166 (3-4): : 309 - 318
  • [35] Eigenvalues and clique partitions of graphs
    Zhou, Jiang
    Bu, Changjiang
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2021, 129
  • [36] Matrix partitions of split graphs
    Feder, Tomas
    Hell, Pavol
    Shklarsky, Oren
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 166 : 91 - 96
  • [37] Path partitions of planar graphs
    Glebov, A. N.
    Zambalaeva, D. Z.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2007, 4 : 450 - 459
  • [38] On resolving acyclic partitions of graphs
    Saenpholphat, V
    Zhang, P
    [J]. ARS COMBINATORIA, 2004, 71 : 65 - 78
  • [39] Optimizing partitions of percolating graphs
    CNLS MS-B258, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
    不详
    [J]. Phys A Stat Mech Appl, 1-4 (100-103):
  • [40] Judicious Partitions of Directed Graphs
    Lee, Choongbum
    Loh, Po-Shen
    Sudakov, Benny
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (01) : 147 - 170