Microwave-assisted synthesis of SnO2-graphite nanocomposites for Li-ion battery applications

被引:76
|
作者
Wang, Y [1 ]
Lee, JY [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
关键词
tin oxide; graphite; lithium-ion battery; microwave;
D O I
10.1016/j.jpowsour.2004.12.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SnO2-graphite nanocomposites are prepared by urea-mediated homogeneous hydrolysis of SnCl4. Heating in a CEM Discover microwave reactor (Sn-C-1), in a household microwave oven (Sn-C-2), or by a conventional conduction method (Sn-C-3) are used to decompose the urea and release hydroxide ions for SnCl4 hydrolysis. The nanocomposites are characterized by XRD, ICP, FE-SEM, SEM and TEM/SAED and used as the material for negative electrodes (anodes) in Li-ion batteries. The SnO2 particles in Sn-C-1 are the smallest and have the narrowest size distribution (1-3 nm, mean: 2.1 nm, standard deviation: 0.3 nm) compared with those in Sn-C-2 (2-5 nm, mean: 3.8 nm, standard deviation: 0.5 nm) and Sn-C-3 (3-9 nm, mean: 6.4 nm, standard deviation: 0.9 nm). The microwave preparation allows smaller SnO2 particles to be produced and more homogenously dispersed in the graphite. This results in improved electrochemical performance as a lithium storage compound. The specific capacities decrease in the order: Sn-C-1 > Sn-C-2 > Sn-C-3. For the 14.2 wt.% SnO2-graphite composite (Sn-C-1), the initial specific capacity was 465 mAh g(-1) and 80% of the initial specific capacity, or 372 mAh g(-1) can still be obtained after 60 charge and discharge cycles. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:220 / 225
页数:6
相关论文
共 50 条
  • [41] Microwave-assisted synthesis of graphene-SnO2 nanocomposite for rechargeable lithium-ion batteries
    Lu, Hongling
    Li, Nianwu
    Zheng, Mingbo
    Qiu, Lan
    Zhang, Songtao
    Zheng, Jiafei
    Ji, Guangbin
    Cao, Jieming
    MATERIALS LETTERS, 2014, 115 : 125 - 128
  • [42] Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties
    Wang, H. E.
    Xi, L. J.
    Ma, R. G.
    Lu, Z. G.
    Chung, C. Y.
    Bello, I.
    Zapien, J. A.
    JOURNAL OF SOLID STATE CHEMISTRY, 2012, 190 : 104 - 110
  • [43] In-situ imaging of Li intercalation in graphite particles in an Li-ion battery
    Takata, Keiji
    JOURNAL OF MICROSCOPY, 2017, 266 (03) : 249 - 252
  • [44] Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes
    Ahmed, Bilal
    Anjum, Dalaver H.
    Gogotsi, Yury
    Alshareef, Husam N.
    NANO ENERGY, 2017, 34 : 249 - 256
  • [45] Nanoribbons of SnO2 as a high performance Li-ion battery anode material
    Faramarzi, Mojtaba Sadati
    Abnavi, Amin
    Ghasemi, Shahnaz
    Sanaee, Zeinab
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [46] Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders
    Pires, F. I.
    Joanni, E.
    Savu, R.
    Zaghete, M. A.
    Longo, E.
    Varela, J. A.
    MATERIALS LETTERS, 2008, 62 (02) : 239 - 242
  • [47] Graphene based nanocomposites for alloy (SnO2), and conversion (Fe3O4) type efficient anodes for Li-ion battery applications
    Mhamane, Dattakumar
    Aravindan, Vanchiappan
    Taneja, Divya
    Suryawanshi, Anil
    Game, Onkar
    Srinivasan, Madhavi
    Ogale, Satishchandra
    COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 130 : 88 - 95
  • [48] Li-ion Battery Emulator for Electric Vehicle Applications
    Mesbahi, T.
    Rizoug, N.
    Bartholomeues, P.
    Le Moigne, P.
    2013 9TH IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2013, : 191 - 198
  • [49] A Reduced Li-Ion Battery Charger for Portable Applications
    Tsai, Chia-Chun
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1718 - 1722
  • [50] Vanadium oxide nanorods for Li-ion battery applications
    Reddy, Ch. V. Subba
    Wicker, S. A.
    Walker, Edwin H.
    Williams, Quinton L.
    Kalluru, Rajamohan R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (08) : A599 - A602