RSOS quantum chains associated with off-critical minimal models and Zn parafermions

被引:10
|
作者
Bianchini, Davide [1 ]
Ercolessi, Elisa [2 ,3 ]
Pearce, Paul A. [4 ]
Ravanini, Francesco [2 ,3 ]
机构
[1] City Univ London, Dept Math, London EC1V 0HB, England
[2] Univ Bologna, Dept Phys & Astron, I-40126 Bologna, Italy
[3] INFN Sez Bologna, I-40126 Bologna, Italy
[4] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
关键词
conformal field theory; integrable spin chains (vertex models); solvable lattice models; INFINITE CONFORMAL SYMMETRY; CORNER TRANSFER-MATRICES; 8-VERTEX SOS MODEL; ENTANGLEMENT; ENTROPY;
D O I
10.1088/1742-5468/2015/03/P03010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider the phi(1,3) off-critical perturbation M(m, m'; t) of the general non-unitary minimal models where 2 <= m <= m' and m, m' are coprime and t measures the departure from criticality corresponding to the phi(1,3) integrable perturbation. We view these models as the continuum scaling limit in the ferromagnetic Regime III of the Forrester-Baxter Restricted Solid-On-Solid (RSOS) models on the square lattice. We also consider the RSOS models in the antiferromagnetic Regime II related in the continuum scaling limit to Z(n) parfermions with n = m' - 2. Using an elliptic Yang-Baxter algebra of planar tiles encoding the allowed face configurations, we obtain the Hamiltonians of the associated quantum chains defined as the logarithmic derivative of the transfer matrices with periodic boundary conditions. The transfer matrices and Hamiltonians act on a vector space of paths on the A(m') - 1 Dynkin diagram whose dimension is counted by generalized Fibonacci numbers.
引用
收藏
页数:19
相关论文
共 28 条
  • [21] Minimal action control method in quantum critical models
    Kazhybekova, Ainur
    Campbell, Steve
    Kiely, Anthony
    JOURNAL OF PHYSICS COMMUNICATIONS, 2022, 6 (11):
  • [22] Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree
    Farrukh Mukhamedov
    Abdessatar Barhoumi
    Abdessatar Souissi
    Journal of Statistical Physics, 2016, 163 : 544 - 567
  • [23] Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree
    Mukhamedov, Farrukh
    Barhoumi, Abdessatar
    Souissi, Abdessatar
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (03) : 544 - 567
  • [24] CRITICAL PROPERTIES OF THE IZERGIN-KOREPIN AND SOLVABLE O(N) MODELS AND THEIR RELATED QUANTUM SPIN CHAINS
    WARNAAR, SO
    BATCHELOR, MT
    NIENHUIS, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (11): : 3077 - 3095
  • [25] EXACT CRITICAL EXPONENTS FOR QUANTUM SPIN CHAINS, NONLINEAR SIGMA-MODELS AT THETA=PI AND THE QUANTUM HALL-EFFECT
    AFFLECK, I
    NUCLEAR PHYSICS B, 1986, 265 (03) : 409 - 447
  • [26] On Translation Invariant Quantum Markov Chains associated with Ising-XY models on a Cayley tree
    Mukhamedov, Farrukh
    Barhoumi, Abdessatar
    Souissi, Abdessatar
    El Gheteb, Soueidy
    37TH INTERNATIONAL CONFERENCE ON QUANTUM PROBABILITY AND RELATED TOPICS (QP37), 2017, 819
  • [27] CRITICAL-BEHAVIOR OF SU(N) QUANTUM CHAINS AND TOPOLOGICAL NON-LINEAR SIGMA-MODELS
    AFFLECK, I
    NUCLEAR PHYSICS B, 1988, 305 (04) : 582 - 596
  • [28] SOV approach for integrable quantum models associated with general representations on spin-1/2 chains of the 8-vertex reflection algebra
    Faldella, S.
    Niccoli, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (11)